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Topic 6: Randomized Complete Block Designs (RCBD's) 
[ST&D sections 9.1 – 9.7 (except 9.6) and section 15.8] 

 
 
 
6.1.  Variability in the completely randomized design (CRD) 
 
In the CRD, it is assumed that all experimental units are uniform.  This is not always true in 
practice, and it is necessary to develop methods to deal with such variability.  When comparing 
two methods of fertilization, if one region of the field has much greater natural fertility than the 
others, a treatment effect might be incorrectly ascribed to the treatment applied to that part of the 
field, leading to a Type I error.  For this reason, when conducting a CRD, it is always advocated 
to include as much of the native variability of the experiment as possible within each 
experimental unit (e.u.), making each e.u. as representative of the whole experiment, and the 
whole experiment as uniform, as possible.  In actual field studies, plots are designed to be long 
and narrow to achieve this objective.  But if the e.u.'s are more variable, experimental error 
(MSE) is larger, F (MST/MSE) is smaller, and the experiment is less sensitive.  And if the 
experiment is replicated in a variety of situations to increase its scope, the variability increases 
even further.  This additional variability needs to be removed from the analysis so that the actual 
effects of treatment can be detected.  This is the purpose of blocking. 
 
 
6.2.  Randomized complete block design (RCBD) 
 
6.2.1.  Definition 
 
The RCBD assumes that a population of experimental units can be divided into a number of 
relatively homogeneous subpopulations or blocks.  The treatments are then randomly assigned to 
experimental units such that each treatment occurs equally often (usually once) in each block 
(i.e. each block contains all treatments).  Blocks usually represent levels of naturally-occurring 
differences or sources of variation that are unrelated to the treatments, and the characterization 
of these differences is not of interest to the researcher.  In the analysis, the variation among 
blocks can be partitioned out of the experimental error (MSE), thereby reducing this quantity and 
increasing the power of the test. 
 
 
6.2.2. Example:  Consider a field trial comparing three cultivars (A, B, and C) of sugar beet with 
four replications (in this case, the field is divided into 12 plots; each plot is a replication / e.u.).  
Suppose the native level of soil nitrogen at the field site varies from high at the north end to low 
at the south end (see diagram).  In such a situation, yield is expected to vary from one end of the 
field to the other another, regardless of cultivar differences.  This violates the assumption that 
the error terms are randomly distributed since the residuals will tend to be positive at the north 
end of the field and negative at the south end. 
  
 
 



 2 

 
 

North end of field Hi N 
1 2 3  

4 5 6  
7 8 9  
10 11 12  

South end of field Low N 
 
One strategy to minimize the impact of this variability in native soil fertility on the analysis of 
treatment effects is to divide the field into four east-west blocks of three plots each. 
 

Block North end of field Hi N 
1 1 2 3  

2 1 2 3  
3 1 2 3  
4 1 2 3  
 South end of field Low N 

 
Because these blocks run perpendicular to the nitrogen gradient, the soil within each of these 
blocks will be relatively uniform.  This is the basic idea of the randomized complete block 
design.  Remember that in the completely randomized design (CRD), each e.u. in the experiment 
has an equal chance of being assigned any treatment level (i.e. a single randomization is 
performed for the entire experiment).  This is not the case in an RCBD.  In the randomized 
complete block design (RCBD), each e.u. in a given block has the same chance of being chosen 
for each treatment (i.e. a separate randomization is performed for each block).  Within each 
block, a fixed number (often 1) of e.u.'s will be assigned to each treatment level.  The term 
"complete" refers to the fact that all treatment levels are represented in each block (and, by 
symmetry, that all blocks are represented in each treatment level). 
 
After the four separate randomizations, one for each block, the field could look like this: 
 

Block North end of field Hi N 
1 B A C  

2 A B C  
3 A C B  
4 A C B  
 South end of field Low N 
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6.2.3.  The linear model 
 
In the case of a single replication per block-treatment combination (like the example above), the 
underlying linear model that explains each observation is: 
 

Yij = µ+ ti + bj + eij 
 
Here, as before, ti represents the effect of Treatment i (i = 1,...,t), such that the average of each 
treatment level is .  Now, in a similar way, bj represents the effect of Block j (j = 
1,...,r), such that the average of each block is .  As always, eij are the residuals, the 
deviations of each observation from their expected values.  The model in dot notation: 
 

 
 
And the sum of squares: 
 

 

 
 TSS = SST + SSB + SSE 
 
Since the variance of means of n observations is s2/n, the coefficients r and t (within SST and 
SSB, respectively) ensure that all mean squares are estimates of the same s2 when there are no 
block or treatment effects.  This is another example of partitioning of variance, made possible 
because the sums of squares of blocks and treatments are orthogonal to one another.  This 
orthogonality is a direct result of the completeness of the block design. 
 
 
6.2.4.  ANOVA 
 
ANOVA table for the RCBD (one replication per block-treatment combination): 
 

Source df SS MS F 
Total rt - 1 TSS   
Treatments t - 1 SST SST/(t-1) MST/MSE 
Blocks r - 1 SSB SSB/(r-1)  
Error (r-1)(t-1) TSS-SST-SSB SSE/(r-1)(t-1)  
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ANOVA table for the CRD: 
 

Source df SS MS F 
Total rt – 1 TSS   
Treatments t - 1 SST SST/(t-1) MST/MSE 
Error t(r - 1) TSS-SST SSE/r(t-1)  

 
Due to the additional factor in the linear model, the ANOVA table for the RCBD has an 
additional row (Block) relative to that for the CRD.  Notice that one consequence of this is that 
there are fewer degrees of freedom for error in the RCBD design than in the CRD design [(r-1)(t-
1) vs. t(r-1), or (r - 1) fewer degrees of freedom].  In the RCBD, these (r – 1) degrees of freedom 
have been partitioned from the error and assigned to the blocks. 
 
 
Situation 1:  No differences among blocks (i.e. no block effects) 
 
If the RCBD design were applied to an experiment in which the blocks were really no different 
from one another (i.e. there were no significant block effect), the MSE for the CRD would be 
smaller than the MSE for the RCBD simply due to the differences in error degrees of 
freedom.  For example, if t = 3 and r = 4, MSECRD = SSE/9 and MSERCBD = SSE/6.  Therefore, 
the F statistic for the CRD would be larger, meaning the CRD would be the more powerful 
(sensitive) design. 
 
To think of this another way, consider the general form of a confidence interval for the 
difference between two means (H0: ): 
 

 

 
If there are no block effects, the half-length of this confidence interval will be smaller for the 
CRD than for the RCBD for two reasons: 
 

1. The CRD will have a smaller critical value in the above formula due to its larger error 
degrees of freedom. 

2. MSECRD < MSERCBD due to difference in error degrees of freedom. 
 
The larger critical value and the larger MSE in the RCBD moves the threshold of rejection 
further from the mean than in the CRD.  This change in the rejection threshold affects the Type 
II error (β) and the power of the test (1- β).  Under this scenario, the probability of accepting a 
false null hypothesis (β) will be smaller in the CRD than in the RCBD.  In other words, the CRD 
would in this situation be more powerful. 
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Situation 2:  Significant difference among blocks 
 
Now suppose that there really are substantial differences among blocks as well as among 
treatments (H0 is false).  In a CRD, this variation due to differences among blocks would remain 
in the error (i.e. would not be partitioned from the error).  This larger MSE would make the F 
statistic (MST/MSE) for the CRD smaller (less significant) than the F statistic for the RCBD.  
 
Under this scenario, the RCBD would still have a larger critical (i.e. tabular) F value because of 
the lost degrees of freedom; but this may be more than compensated by the smaller MSE.  If the 
effect of the reduced MSE (increased F statistic) outweighs the effect of the larger critical value 
(rejection threshold further from 0), the net result will be a smaller β and thus a larger power in 
the RCBD relative to the CRD. 
 

 
 
Obviously, one should only use the RCBD when the variation explained by the blocks more than 
offsets the penalty associated with having fewer error degrees of freedom.  So how can one 
determine when an RCBD is appropriate?  This question is answered using the concept of 
efficiency, introduced in Section 1.4.4.6 and elaborated upon in section 6.3. 
 
 
6.2.5.  Example (from Little and Hills) 
 
This experiment was conducted to investigate the effect of estrogen on weight gain in sheep. 
 
The four treatments in the experiment are a factorial combinations of two separate factors:  
Gender of sheep (male and female) and amount of estrogen (S0 and S3).  Although this 
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experiment could be analyzed as a factorial, in this example we are treating the four treatments 
and four levels of a single factor (gender-estrogen combination). 
 
Sheep from four different ranches were involved in the experiment.  Anticipating that differences 
in herd management may affect the results, the researchers blocked by ranch.  The completeness 
of an RCBD demanded, therefore, that each ranch volunteer four sheep to the experiment, two 
males and two females, providing one replication of each treatment level from each ranch. 
 
 
 
Table 6.1  RCBD.  Effect of estrogen on weight gain in sheep (lbs). 
 

 Ranch (i.e. block) Treatment 
Treatment I II III IV Total Mean 
F-S0 47 52 62 51 212 53 
M-S0 50 54 67 57 228 57 
F-S3 57 53 69 57 236 59 
M-S3 54 65 74 59 252 63 
Block Total 208 224 272 224 928  
Block Mean 52 56 68 56  58 

 
Table 6.2  RCBD ANOVA 
 

Source df SS MS F 
Total 15 854   
Blocks 3 576 192.00 24.69** 
Treatment 3 208 69.33 8.91** 
Error 9 70 7.78  

 
Table 6.3  CRD ANOVA 
 

Source df SS MS F 
Totals 15 854   
Treatment 3 208 69.33 1.29 NS 
Error 12 646 53.83  

 
Since each treatment is present at the same level of replication within each block, differences 
among blocks are not the result of treatment effects.  Differences among blocks are entirely 
independent of treatment effects and are due only to differences associated with the four ranches.  
Therefore, this component (SSB) can be perfectly partitioned from the total SS.  Ultimately, this 
reduces the experimental error.  To see this, compare the two tables above (Tables 6.2 and 6.3), 
paying close attention to the degrees of freedom and the SS in each analysis. 
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6.3.  Relative efficiency [ST&D 221, and Topic 1 section 1.4.4.6] 
 
We saw earlier that if the variation among blocks is large then we can expect the RCBD to be 
more sensitive to treatment effects than the CRD; conversely, if this variation is small, the CRD 
may be more sensitive (i.e. more powerful).  The concept of relative efficiency formalizes the 
comparison between two experimental methods by quantifying this balance between loss of 
degrees of freedom and reduction in experimental error. 
 
Recall that the F statistic = MST/MSE.  The experimental design primarily affects the MSE since 
the degrees of freedom for treatments is always (t – 1) and the variation due to treatments is 
independent of (i.e. orthogonal to) the variation due to blocks and the experimental error.  The 
information per replication in a given design is: 
 

 

 
Therefore, the relative efficiency of one design another is 
 

 

 
In reality, we never know the true experimental error ( ); we only have an estimate of it 
(MSE).  To pay for this lack of knowledge, a correction factor is introduced into the expressions 
for information (I) and relative efficiency (RE) (Cochram and Cox, 1957).  The following 
formulas include this correction factor and give an estimate of the relative amount of information 
provided by two designs: 
 

 

 

 

 
where MSEi is the mean square error from experimental design i.  If this ratio is greater than 1, it 
means that Design 1 provides more information per replication and is therefore more efficient 
than Design 2.  If RE1:2 = 2, for example, each replication in Design 1 provides twice as much 
information as each replication in Design 2.  Design 1 is twice as efficient. 
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The main problem with the approach is how to estimate MSE for the alternative design.  Suppose 
an experiment is conducted as an RCBD.  The MSE for this design is simply given by the 
analysis (MSERCBD).  But now we wish to ask the question:  What would have been the value of 
the MSE if the experiment had been conducted as a CRD?  In fact, it was not conducted as a 
CRD.  The treatments were not randomized according to a CRD.  Because of this, one cannot 
just re-analyze the data as though it were a CRD and use the MSE from the analysis as a valid 
estimate of MSECRD. 
 
MSECRD can be estimated, however, by the following formula (ST&D 222): 
 

 

 
where MSB and MSE are the block and error mean squares in the original design (RCBD), and 
dfB, dfT, and dfe are the block, treatment, and error degrees of freedom in the original design.  To 
obtain this formula, the total SS of the two designs are assumed equal.  This equation is then 
expanded such that the SS are rewritten in terms of the underlying variance components of the 
expected MS.  Simplification of the terms generates the above estimate (for a complete 
derivation, see Sokal & Rohlf 1995, Biometry 838-839). 
 
From the sheep experiment, MSERCBD = 7.78 and MSBRCBD = 192.0. Therefore: 
 

 

 
And… 
 

 

 
Interpretation:  It takes 5.51 replications in the CRD to produce the same amount of information 
as one replication in the RCBD.  Or, the RCBD is 5.51 time more efficient than the CRD in this 
case.  It was a very good idea to block by ranch. 
 
 
6.4.  Assumptions of the model 
 
Again, the model for the RCBD with a single replication per block-treatment combination is: 
 

Yij = µ + ti + bj + eij 
 
As in the CRD, it is assumed that the residuals (eij) are independent, homogeneous, and normally 
distributed.  Also as in the CRD, it is assumed that the variance within each treatment levels is 
homogeneous across all treatment levels.  But now, in an RCBD without replication (i.e. with a 
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single replication per block-treatment combination), there is a third assumption of the model:  
Additivity of main effects. 
 
Recall that experimental error is defined as the variation among experimental units that are 
treated alike.  With that in mind, consider the following schematic of our sheep experiment: 
 

 Ranch 
Trtmt 1 2 3 4 

M Est0 
    

M Est3 
    

F Est0 
    

F Est3 
    

 
In this experiment, while there are four reps of each level of treatment and four reps of each 
block, there is no true replication vis-à-vis calculation of experimental error.  For example, 
there is only one male sheep at Ranch 1 that received no estrogen.  Normally, our estimate of the 
experimental error would come from looking at the variation among two or more sheep treated 
alike (e.g. two or more sheep of the same gender, at the same ranch, receiving the same estrogen 
treatment).  So if we have no ability to calculate the experimental error, what is the eij in our 
linear model? 
 
There is an expected value for each of the 16 cells in the above diagram, given by: 
 

Expected Yij = µ + ti + bj 
 
In this design, we use the deviation of the observed values from their expected value as estimates 
of the experimental error.  Technically, though, these deviations are the combined effects of 
experimental error and any nonzero block*treatment interaction for that cell.  With only one 
replication per cell, we are unable to separate these two effects.  So when we use these deviations 
(observed – expected) as an estimate of the experimental error, we are assuming that there are no 
significant block*treatment interactions (i.e. no significant non-additive effects). 
 
Said another way, in this model: 
 

Yij = µ + ti + bj + eij 
 
The residuals are the results of experimental error and any non-additive treatment*block 
interactions: 
 

eij = ti*bj + errorij 
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Thus, when we use eij as estimates of the true experimental error, we are assuming that ti*bj = 0. 
 
This assumption of no interaction in a two-way ANOVA is referred to as the assumption of 
additivity of the main effects.  If this assumption is violated, it's an indication that your blocks 
are not behaving as you expected; in other words, there is something of interest lurking within 
your blocking variable that you need to better understand. 
 
 
Example:  A significant interaction term will result if the effect of the two factors A and B on 
the response variable Y is multiplicative rather than additive.  This is one form of non-additivity. 
 

 Factor A  
Factor B t1= +1 t2= +2 t3= +3  

b1= +1 
2 3 4 Additive effects 
1 2 3 Multiplicative effects 
0 0.30 0.48 Log of multiplicative effects 

b2= +5 
6 7 8 Additive effects 
5 10 15 Multiplicative effects 

0.70 1.00 1.18 Log of multiplicative effects 
 
In the above table, additive and multiplicative treatment effects are shown in a hypothetical two-
way ANOVA.  Let us assume that the population mean is µ = 0.  Then the mean of the e.u.'s 
subjected to level 1 of factor A and level one of factor B should be 2 by the conventional 
additive model.  Similarly, the expected subgroup mean subjected to level 3 of factor A and level 
2 of factor B is 8, since the respective contributions to the mean are 3 and 5.  If the process is 
multiplicative rather than additive, however, as occurs in a variety of physicochemical and 
biological phenomena, the expected values are quite different.  For treatment A3B2, the expected 
value is 15, the product of 3 and 5. 
 
If multiplicative data of this sort are analyzed by a conventional ANOVA, the interaction SS will 
be large due to the nonadditivity of the treatment effects.  If this SS is embedded in the SSE, as 
in the case of an RCBD with one e.u. per block-treatment combination, the estimate of the 
experimental error will be artificially large, thereby making all F tests artificially insensitive. 
 
In the case of multiplicative effects, there is a simple remedy.  Transforming the variable by 
taking the log of each mean will restore additivity.  The third line in each cell gives the logarithm 
of the expected value, assuming multiplicative relations.  After the transformation, the 
increments are strictly additive again (t1=0, t2=0.30, t3=0.48, b1=0, b1=0.70).  This is a good 
illustration of how transformations of scale can be used to meet the assumptions of analysis of 
variance. 
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6.4.1  Tukey’s 1-df test for nonadditivity [ST&D 395] 
 
John Tukey devised a very clever method of testing for significant non-additive effects (i.e. 
interactions) in datasets that lack the degrees of freedom necessary to include such effects (i.e. 
interactions) directly in the model.  Here's the logic behind the test: 
 
To begin, recall that under our linear model, each observation is characterized as: 

 
 

 
Therefore, the predicted value of each individual is given by: 

 
 

 
In looking at these two equations, the first thing to notice is the fact that, if we had no error in 
our experiment (i.e. if ), the observed data would exactly match its predicted values and a 
correlation plot of the two would yield a perfect line with slope = 1: 

 

 
 

Now let's introduce some error.  If the errors in the experiment are in fact random and 
independent (criteria of the ANOVA and something achieved by proper randomization from the 
outset), then  will be a random variable that causes no systematic deviation from this linear 
relationship, as indicated in the next plot: 
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As this plot shows, while random error may decrease the overall strength of correlation, it will 
not systematically compromise its underlying linear nature. 

 
But what happens when you have an interaction (e.g. Block * Treatment) but lack the degrees of 
freedom necessary to include it in the linear model (e.g. when you have only 1 replication per 
block*treatment combination)?  In this case, the df and the variation assigned to the interaction 
are relegated to the error term simply because we need a nonzero dferror to carry out our F tests.  
Under such circumstances, you can think of the error term as now containing two separate 
components: 

 
 B*T Interaction Effects 

 
While the first component is random and will not affect the underlying linear correlation seen 
above, the second component is non-random and will cause systematic deviations from linearity.  
Indeed, if this interaction component is too large, the observed vs. predicated correlation will 
become detectably non-linear, thereby violating the ANOVA assumption of random and 
independent error, not to mention making your F tests much less sensitive. 

 
The plot on the following page illustrates the deviation from linearity that results when 
significant multiplicative effects (one kind of nonadditive effect) cannot be accommodated by 
the model.  The quadratic (i.e. non-linear) trend is unmistakable. 
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SO, if the observed and predicted values obey a linear relationship, then the non-
random Interaction Effects buried in the error term are sufficiently small to 
uphold our assumption of random, independent error. 
 

Seen in this light, our test for unaccounted-for nonadditivity [significant nonadditive (i.e. 
interaction) effects] becomes a simple test for linear regression, which is what Tukey's 1-df test 
is.  It is a regression of the observed values with the squares of the predicted values.  Why the 
squares?  Because, as mentioned before when talking about contrasts, to establish the existence 
of a linear relationship (as opposed to a correlation of a higher power), one must test for (and 
successfully reject Ho for) a quadratic trend. 
 
Please note:  This test is necessary ONLY when there is one observation per block-treatment 
combination.  If there are two or more replications per block-treatment combination, the 
block*treatment interaction can be tested directly in an exploratory model. 
 
 

Observed vs. Predicted (RCBD, with error and B*T)
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