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Topic 13. Analysis of Covariance (ANCOVA) - Part I [ST&D Ch. 17] 
 
 
13.1  Introduction 
 
The analysis of covariance (ANCOVA) is a technique that can be useful for improving the 
precision of an experiment. Suppose that in an experiment with a response variable Y, there is 
another variable (X) such that Y is linearly related to (i.e. covaries with) X. Furthermore, suppose 
that the researcher cannot control X but can observe it along with Y. Such a variable X is called a 
covariate or a concomitant variable. The basic idea underlying ANCOVA is that precision in 
detecting the effects of treatments on Y can be increased by adjusting the observed values of Y 
for the effect of the concomitant variable. If such adjustments are not performed, the concomitant 
variable X could inflate the error mean square and make true differences in the response due to 
treatments harder to detect. The concept is very similar to the use of blocks to reduce the 
experimental error. But whereas the delimitation of blocks can be very subjective/arbitrary when 
the blocking variable is a continuous variable, controlling error in such cases via a covariable is 
straightforward. 
 
The ANCOVA uses information about X in two distinct ways: 
 
1. Variation in Y that is associated with variation in X is removed from the error variance 

(MSE), resulting in more precise estimates and more powerful tests. 
2. Individual observations of Y are adjusted to correspond to a common value of X, thereby 

producing group means that are not biased by X, as well as equitable group comparisons. 
 
A hybrid of ANOVA and linear regression analysis, ANCOVA is a method of adjusting for the 
effects of an uncontrollable nuisance variable. We will review briefly some concepts of 
regression analysis to facilitate this discussion. 
 
 
13.2  Review of regression concepts 
 
The equation of a straight line is Y = a + bX, where Y is the dependent variable and X is the 
independent variable. This straight line intercepts the Y axis at the value a, so a is called the 
intercept. The coefficient b is the slope of the straight line and represents the change in Y for 
each unit change in X (i.e. rise/run). Any point (X,Y) on this line has an X coordinate, or abscissa, 
and a Y coordinate, or ordinate, the pair of which satisfies the equation. 
 
 
13.2.1  The principle of least squares 
 
To find the equation of the straight line that best fits a dataset consisting of (X,Y) pairs, we use a 
strategy which relies on the concept of least squares. For each point in the dataset, we find its 
vertical distance from the putative best-fit straight line, square this distance, and then add 
together all the squared distances (i.e. vertical deviations). Of all the lines that could possibly be 
drawn through the scatter of data, the line of best fit is the one that minimizes this sum. 
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Example: Below is a scatterplot relating the body weight (X) of 10 animals to their individual 
food consumption (Y). The data are shown to the left. 
 
 Body weight Food consumption     
 (X) (Y) 
 4.6 87.1 
 5.1 93.1 
 4.8 89.8 
 4.4 91.4 
 5.9 99.5 
 4.7 92.1 
 5.1 95.5 
 5.2 99.3 
 4.9  93.4 
 5.1 94.4 
 
 
13.2.2  Residuals 
 
The vertical distance from an individual observation to the best-fit line is called the residual for 
that particular observation. These residuals, indicated by the solid red lines in the plot above, are 
the differences between the actual (observed) Y values and the Y values that the regression 
equation predicts. These residuals represent variation in Y that the independent variable (X) does 
not account for (i.e. they represent the error in the model). 
 
 
13.2.3  Formulas to calculate a and b 
 
Fortunately, finding the equation of the line of best fit does not require summing the residuals of 
the infinite number of possible lines and selecting the line with smallest sum of squared 
residuals. Calculus provides simple equations for the intercept b and the slope a that minimize 
the SS of the residuals (i.e. the SSE): 
 

     and      

 
For the sample dataset given above, we find: 
 

 

 
 

 
Therefore, the equation of the line of best fit is Y = 55.26 + 7.69X. 
 

b =
(Xi − X∑ )(Yi −Y )
(Xi − X∑ )2

≡
S(XY )
SS(X)

a =Y − bX

b =
(4.6− 4.98)(87.1− 93.56)+...+ (5.1− 4.98)(94.4− 93.56)[ ]

(4.6− 4.98)2 +...+ (5.1− 4.98)2
= 7.69

a = 93.56− 7.69(4.98) = 55.26
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13.2.4  Covariance 
 
In the formula for the slope given above, the quantity S(XY) is called the corrected sum of 
cross products. Dividing S(XY) by (n – 1) produces a statistic called the sample covariance 
between X and Y, which is a quantity that indicates the degree to which the values of the two 
variables vary together. If high values of Y (relative to ) are associated with high values of X 
(relative to ), the sample covariance will be positive. If high values of Y are associated with 
low values of X, or vice-versa, the sample covariance will be negative. If there is no association 
between the two variables, the sample covariance will be close to zero. 
 
 
13.2.5  Using R for regression analysis 
 
The lm() function can be used for regression analysis, as seen before when we discussed trend 
analysis. Representative code for the sample dataset above: 
 
X <- c(4.6, 4.7, 5.1, 5.1, 4.8, 5.2, 4.4, 4.9, 5.9, 5.1) 
Y <- c(87.1, 92.1, 93.1, 95.5, 89.8, 99.3, 91.4, 93.4, 99.5, 94.4) 
 
regression <- lm(Y ~ X) 
anova(regression) 
summary(regression) 
 
 
Output 
 
Analysis of Variance Table 
Response: Y 
          Df   Sum Sq   Mean Sq  F value    Pr(>F)    
X          1 90.83551 90.835510 16.23204 0.0037939 ** 
Residuals  8 44.76849  5.596061 
 
Coefficients: 
             Estimate Std. Error t value   Pr(>|t|)     
(Intercept) 55.263281   9.534890  5.7959 0.00040706 *** 
X            7.690104   1.908735  4.0289 0.00379385 ** 
Multiple R-squared: 0.6698586 
 
 
This analysis tells us that the model accounts for a significant (p = 0.0038) amount of the 
variation in the experiment, nearly 67% of it (R-square = 0.67). This indicates that a great deal of 
the variation in food consumption among individuals is explained, through a simple linear 
relationship, by differences in body weight. 
 
In the  summary() output, we see that the equation of the best-fit line for this dataset is Y = 55.26 
+ 7.69X, just as we found before. The p-values associated with these estimates (0.0004 for a and 
0.0038 for b) are the probabilities that the true values of these parameters are different from zero. 
  

Y
X
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13.2.6  Analysis of adjusted Y’s 
 
The experimental error in the previous analysis (MSE = 5.596) represents the variation in food 
consumption that would have been observed if all the animals used in the experiment had had the 
same initial body weight. To illustrate this, consider the following table in which each Y value is 
adjusted for differences in X via the regression equation. This adjustment essentially consists of 
sliding each value, in parallel with the best-fit line, to some common value of X. For this 
purpose, any value of X could be used to adjust the Y’s, but  (4.98) is typically used as a 
representative value: 
 

X Y 
Adjusted Y 

=  
4.6 87.1 90.0222 
5.1 93.1 92.1772 
4.8 89.8 91.1842 
4.4 91.4 95.8602 
5.9 99.5 92.4252 
4.7 92.1 94.2532 
5.1 95.5 94.5772 
5.2 99.3 97.6082 
4.9 93.4 94.0152 
5.1 94.4 93.4772 

 
The first adjusted value, 90.02224, is the food consumption expected for this animal if its initial 
body weight had been 4.98 ( ). Because X and Y are positively correlated, the adjusted food 
consumption for underweight animals is always higher than the observed values and the adjusted 
food consumption for overweight animals is always lower. 
 
Now consider the results of a regression on the adjusted Y's: 
 
adjY <- Y - 7.69 * (X - mean(X)) 
 
adj_regression <- lm(adjY ~ X) 
anova(adj_regression) 
summary(adj_regression) 
 
 
Output 
 
Analysis of Variance Table 
 
Response: adjY 
          Df   Sum Sq   Mean Sq F value  Pr(>F) 
X          1  0.00000 0.0000000       0 0.99996 
Residuals  8 44.76849 5.5960612                 

X

)( XXbY --

X
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Coefficients: 
                Estimate   Std. Error t value   Pr(>|t|)     
(Intercept) 9.355948e+01 9.534890e+00 9.81233 9.7761e-06 *** 
X           1.041667e-04 1.908735e+00 0.00005    0.99996     
Multiple R-squared: 3.722857e-10 
 
As you might expect, with all animals adjusted to the same initial weight, body weight (X) no 
longer explains any variation in the study (SSX = 0, slope ~ 0). But here's the interesting result: 
The MSE (5.596) is exactly the same as we saw before! It is this uniformity in the MSE that 
shows that the two analyses are equivalent. That is, adjusting each Y to a common X by the best-
fit equation is equivalent, in terms of accounting for variation, to a linear regression. 
 
 
13.3  ANCOVA example 
 
The analysis of covariance is illustrated below with data from a pilot experiment designed to 
study oyster growth. Specifically, the goals of this experiment were: 
 

1. To determine if exposure to artificially heated water affects growth 
2. To determine if position in the water column (surface vs. bottom) affects growth 

 
In this experiment, twenty bags of ten oysters each were placed across 5 locations within the 
cooling water runoff of a power-generation plant (i.e. 4 bags / location). Each location is 
considered a treatment: TRT1: cool-bottom, TRT2: cool-surface, TRT3: hot-bottom, TRT4: hot-
surface, TRT5: control (i.e. mid-depth and mid-temperature). 
 
Each bag of ten oysters is considered to be one experimental unit. The oysters were cleaned and 
weighed at the beginning of the experiment and then again about one month later. The dataset 
consists of the initial weight and final weight for each of the twenty bags. 
 
The data: 
 

Trtmt Rep Initial Final 
1 1 27.2 32.6 
1 2 32.0 36.6 
1 3 33.0 37.7 
1 4 26.8 31.0 
2 1 28.6 33.8 
2 2 26.8 31.7 
2 3 26.5 30.7 
2 4 26.8 30.4 
3 1 28.6 35.2 
3 2 22.4 29.1 
3 3 23.2 28.9 
3 4 24.4 30.2 
4 1 29.3 35.0 
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4 2 21.8 27.0 
4 3 30.3 36.4 
4 4 24.3 30.5 
5 1 20.4 24.6 
5 2 19.6 23.4 
5 3 25.1 30.3 
5 4 18.1 21.8 

 
The code: 
 
# I. Simple overall regression 
oyster_reg_mod<-lm(Final ~ Initial, oyster_dat) 
anova(oyster_reg_mod) 
summary(oyster_reg_mod) 
 
# II. Using loops in R to perform regressions at each treatment level 
Trtmt_levels<-c(1:5) 
for (i in Trtmt_levels) { 
  with(subset(oyster_dat, Trtmt == Trtmt_levels[i]), { 
    print(Trtmt_levels[i]) 
    print(summary(lm(Final ~ Initial))) 
  }) 
} 
 
# III. The one-way ANOVA 
oyster_anova_mod<-lm(Final ~ Trtmt, oyster_dat) 
anova(oyster_anova_mod) 
 
# IV. The ANCOVA 
#library(car) 
oyster_ancova_mod<-lm(Final ~ Trtmt + Initial, oyster_dat) 
anova(oyster_ancova_mod) 
Anova(oyster_ancova_mod, type = 2) 
summary(oyster_ancova_mod) 
 
The first linear model performs a simple linear regression of Final Weight on Initial Weight and 
shows that, for the experiment as a whole, there is a significant linear relationship between these 
two variables (p < 0.0001; R2 = 0.95), as shown in the output below: 
 
Simple regression 
 
Analysis of Variance Table 
 
Response: Final 
          Df    Sum Sq   Mean Sq   F value     Pr(>F)     
Initial    1 342.35782 342.35782 377.79308 1.5761e-13 *** 
Residuals 18  16.31168   0.90620 
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Coefficients: 
             Estimate Std. Error  t value   Pr(>|t|)     
(Intercept) 3.7646865  1.4094093  2.67111   0.015577 *   
Initial     1.0512544  0.0540855 19.43690 1.5761e-13 *** 
Multiple R-squared: 0.9545217 
 
 
This strong dependence of Final Weight on Initial Weight suggests that Initial Weight may be a 
useful covariable for this analysis. The second part of the above script carries out a similar 
analysis within each treatment group separately. This analysis reveals the fact that the slope of 
this regression is fairly uniform across all treatment levels. This is important because in 
ANCOVA, all treatment groups are adjusted by the same slope. The estimates of the slopes 
within each treatment group: 
 
 
Coefficients: 
                 Estimate Std. Error  t value   Pr(>|t|)   
Slope(Trt1)     0.9826468  0.1094183  8.98064   0.012173 * 
Slope(Trt2)     1.5013550  0.3923086  3.82697   0.061997 . 
Slope(Trt3)     1.0560666  0.1280121  8.24974   0.014377 * 
Slope(Trt4)    1.05692503 0.06842649 15.44614  0.0041652 ** 
Slope(Trt5)    1.22388605 0.02530981 48.35619 0.00042738 *** 
 
 
This similarity can be seen in the following scatterplots of Final vs. Initial Weight for treatment 
levels 1 and 3 below: 
 
 TRT1: Y = 5.24 + 0.98X  TRT3: Y = 4.82 + 1.06X 

      
 
The third section of the above code conducts a simple ANOVA of a CRD with four replications.  
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The output: 
 
The ANOVA 
 
Response: Final 
          Df   Sum Sq   Mean Sq F value   Pr(>F)   
Trtmt      4 198.4070 49.601750 4.64255 0.012239 * 
Residuals 15 160.2625 10.684167 
 
From these results, we would conclude that location does affect oyster growth (p = 0.0122). This 
particular model explains roughly 55% of the observed variation (198.4 / (198.4 + 160.3)). 
 
Finally, in the last section of the above code (the ANCOVA), we ask the question: What is the 
effect of location on Final Weight, adjusting for differences in Initial Weight? That is, what 
would the effect of Location be if all twenty bags of oysters had started with the same initial 
weight? The output: 
 
The ANCOVA (Type I SS) 
 
Analysis of Variance Table 
 
Response: Final 
          Df     Sum Sq    Mean Sq   F value     Pr(>F)     
Trtmt      4 198.407000  49.601750 164.46503 1.3398e-11 *** 
Initial    1 156.040177 156.040177 517.38400 1.8674e-12 *** 
Residuals 14   4.222323   0.301595 
 
 
The ANCOVA (Type II SS) 
 
Anova Table (Type II tests) 
 
Response: Final 
              Sum Sq Df  F value     Pr(>F)     
Trtmt      12.089359  4  10.0212 0.00048186 *** 
Initial   156.040177  1 517.3840 1.8674e-12 *** 
Residuals   4.222323 14 
 
 
There are several things to notice here. First, the Type I SS for Trtmt (198.4) is the unadjusted 
treatment SS and is the same as the one found in the one-way ANOVA (previous page). If we 
subtract this SS from the Total SS, we obtain the error SS for the simple one-way ANOVA 
(358.6695 – 198.407 = 160.2625). 
 
The Type II SS for Trtmt (12.1) is the adjusted treatment SS and allows us to test the treatment 
effects, adjusting for other factors in the model. The reason adjustments are needed is because 
the two factors in the model, class variable Trtmt and regression variable INITIAL, are not 
orthogonal to one another. Because INITIAL is a continuous variable, the design is not balanced, 
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even though there are no missing data (i.e. not all levels of Trtmt are present in all levels of 
Initial). This lack of orthogonality necessitates the use of partial sums of squares. 
 

Type II SS produces the appropriate results in ANCOVA. 
 
Even though the adjusted Trtmt MS (12.09/4 = 3.02) is much smaller than the unadjusted TRT 
MS (49.60), the reduction in the MSE is also quite large (from 10.68 in the ANOVA to 4.22/14 = 
0.30 in the ANCOVA). It is this reduction in the experimental error that drives the increase in the 
F statistic for TRT from 4.64 in the simple one-way ANOVA to 10.02 in the ANCOVA. The 
power of the test for treatment differences increases when the covariate is included because most 
of the error in the simple ANOVA is due to variation among INITIAL values. 
 
Similarly, the true test of the significance of the linear components of the relationship between 
INITIAL (X) and FINAL (Y) uses an INITIAL SS that is adjusted for the effects of treatment. In 
this case, notice that the INITIAL SS decreased (from 342.36 in the simple regression to 156.04 
in the ANCOVA) because some of the observed variation can be attributed to the treatments. But 
again, the MSE also decreased significantly (from 0.91 to 0.30), ultimately leading to a more 
sensitive test for INITIAL. 
 
 
13.3.1  Graphic interpretation of the ANCOVA example 
 
The following scatterplot shows the data for treatments 2 (white squares) and 3 (white circles) 
from the oyster example. The mean final weight of treatment 3 (pink circle, 30.85) is seen to be 
slightly lower than the mean final weight of treatment 2 (pink square, 31.65).  
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For each treatment, variation in X is seen to contribute to variation in Y, as indicated by the 
common regression lines (solid lines). Because of this relationship, differences in the initial 
average weights of oysters assigned to each treatment can contribute greatly to the observed 
differences between the final average weights. For example, Treatment 3 started with an initial 
average weight of 24.65, while Treatment 2 started with an initial average weight of 27.175. It is 
therefore likely that the final difference in weights (30.850 < 31.650) is not a good indicator of 
the treatment effects because the difference is due to both treatment effects and the differences in 
initial weights. 
 
Thus the need to adjust the observed treatment means to some common initial weight. In the 
schematic above, this common initial weight is the mean of Treatments 2 and 3 (25.913). 
Adjustment consists of sliding the values of Treatment 3 up its regression line and the values of 
Treatment 2 down its regression line such that the initial weights of the two treatments are equal 
to the overall mean. By adjusting in this way, we see that the real effect of Treatment 3 is to 
increase the final weights of the oysters relative to Treatment 2. This effect was completely 
hidden in the original data. 
 
 
13.3.2  Least squares adjusted means 
 
If you requested the means of the treatment groups with a line like this: 
 
Final_means <- aggregate(oyster_dat$Final, list(oyster_dat$Trtmt), mean) 
 
R would produce the unadjusted means of the final weights of all five treatment levels. As 
discussed in the graphic example above, these means and the comparisons among them are not 
strictly appropriate. To compare the true effects of the treatments, unbiased by differences in 
initial weights, the treatment means should be adjusted to what their values would have been if 
all oysters had had the same initial weight. As we saw before with unbalanced designs, these 
adjusted means can be calculated in R via the emmeans() function. For example, the statement: 
 
oyster.lsm <- emmeans(oyster_ancova_mod, "Trtmt") 
 
will generate an object containing least squares adjusted means that can then be acted upon by 
various means comparisons procedures via the contrast() function. In the summary table below, 
note the large differences between the unadjusted and adjusted treatments means for the variable 
FINAL: 
 

TRT Unadjusted 
Means 

Adjusted 
LS Means 

Calculation [ ] 

1 34.475 30.153 34.475 - 1.08318 (29.75 - 25.76) 
2 31.650 30.117 31.650 - 1.08318 (27.18 - 25.76) 
3 30.850 32.052 30.850 - 1.08318 (24.65 - 25.76) 
4 32.225 31.504 32.225 - 1.08318 (26.43 - 25.76) 
5 25.025 30.398 25.025 - 1.08318 (20.80 - 25.76) 

 

)( XXYY iiadji
--= b
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These differences are due to the large differences in initial weights among the treatment groups 
(TRT 5, for example, was assigned much smaller oysters than other treatments). In calculating 
these adjusted means, the coefficient b = 1.08318 is used. This coefficient can be found in the 
summary() output and represents a "best" single slope value that describes the relationship 
between X and Y, accounting for all other classification variables: 
 
> summary(oyster_ancova_mod) 
 
Call: 
lm(formula = Final ~ Trtmt + Initial, data = oyster_dat) 
 
Residuals: 
       Min         1Q     Median         3Q        Max  
-0.8438076 -0.3154120 -0.2170735  0.4863336  0.8871085  
 
Coefficients: 
               Estimate  Std. Error  t value   Pr(>|t|)     
(Intercept)  2.25040039  1.44307538  1.55945 0.14120460     
Trtmt2      -0.03581197  0.40722674 -0.08794 0.93116903     
Trtmt3       1.89921708  0.45801799  4.14660 0.00098809 *** 
Trtmt4       1.35157290  0.41936648  3.22289 0.00613476 **  
Trtmt5       0.24445938  0.57658196  0.42398 0.67802248     
Initial      1.08317982  0.04762051 22.74608 1.8674e-12 *** 
 
 
This estimated "best" slope is identical to the slope one would obtain by performing individual 
ANOVAs on both X and Y, calculating their respective residuals, and then running a regression 
of the Y residuals on the X residuals. As suggested in the above table, this slope can be used to 
create a new adjusted response variable: 
 

 
 
This adjusted response variable (Z) is very handy because it can be used to perform a Levene’s 
test for homogeneity of variances as well as a Tukey test for non-additivity, if the design is an 
RCBD with only one observation per block-treatment combination. 
 
 
  

)( XXYZ --= b
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13.3.3  Contrasts 
 
In this particular oyster example, the adjusted treatment means from the ANCOVA can be 
analyzed further with four orthogonal contrasts, as shown: 
 
#Comparing LSMeans, using the "emmeans" package (function contrast()) 
oyster.lsm <- emmeans(oyster_ancova_mod, "Trtmt") 
 
#Contrasts 
contrast(oyster.lsm, list("control vs. trtmt"=c(-1,-1,-1,-1,4), 
                          "bottom vs. surface"=c(-1,1,-1,1,0), 
                          "cool vs. hot"=c(-1,-1,1,1,0), 
                          "depth:temp"=c(1,-1,-1,1,0))) 
 
 
The output: 
 
contrast                estimate           SE df t.ratio p.value 
 control.vs.trtmt   -2.2371404940 1.7037332311 14  -1.313  0.2103 
 bottom.vs.surface  -0.5834561450 0.5504960078 14  -1.060  0.3071 
 cool.vs.hot         3.2866019399 0.6157932555 14   5.337  0.0001 
 depth:temp         -0.5118322117 0.5869457568 14  -0.872  0.3979 
 
 
The output indicates that oyster growth is only significantly affected by differences in 
temperature (cool vs. hot). Although constructed to be orthogonal, these contrasts are not 
orthogonal to the covariable; therefore, their sums of squares (if you were to go calculate them) 
do not add to the adjusted treatment SS. 
 
Now consider this: If the covariable is not included in the model, these exact same contrasts 
produce completely different results: 
 
> contrastmatrix<-cbind(c(-1,-1,-1,-1,4),c(-1,1,-1,1,0), 
 c(-1,-1,1,1,0),c(1,-1,-1,1,0)) 
> oyster_contrast_mod<-aov(Final ~ Trtmt, oyster_dat) 
> summary(oyster_contrast_mod, split = list(Trtmt = list("Cont v. Trt" = 1, 
 "Bot vs. Surf" = 2, "Cool vs. Hot" = 3, "Depth:Temp" = 4))) 
 
 
                      Df   Sum Sq   Mean Sq  F value   Pr(>F)    
Trtmt                  4 198.4070  49.60175  4.64255 0.012239 *  
  Trtmt: Cont v. Trt   1 169.3620 169.36200 15.85168 0.001204 ** 
  Trtmt: Bot vs. Surf  1   2.1025   2.10250  0.19679 0.663659    
  Trtmt: Cool vs. Hot  1   9.3025   9.30250  0.87068 0.365545    
  Trtmt: Depth:Temp    1  17.6400  17.64000  1.65104 0.218305    
Residuals             15 160.2625  10.68417 
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13.4  ANCOVA model 
 
Recall the ANOVA model for a CRD: 
 

 
 
We have not discussed the linear model for a simple linear regression, but it is: 
 

 
 
ANCOVA is a combination of ANOVA and regression, a fact reflected in its linear model: 
 

 
 
Extending this concept, the linear model for ANCOVA within any given design (e.g. CRD, 
RCBD, LS, etc.) is simply the linear model for the ANOVA plus an additional term for the 
concomitant variable. For the CRD, the formula can be slightly rearranged: 
 

 
 
And here you have it: An ANCOVA on the original response variable (Y) is equivalent to a 
regular ANOVA on values of Y that have been adjusted according to their linear dependence on 
X. In the discussion that follows (Topic 13, Part II), we denote these regression-adjusted values 
with the letter Z. 
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