
 1 

Topic 12. The Split-plot Design and its Relatives (Part I) [ST&D Ch. 16] 
 
 
12.1. Definition 
 
The split-plot design results from a specialized randomization scheme for a factorial experiment. 
 

The basic split-plot design involves assigning the levels of one factor 
to main plots arranged in a CRD, RCBD, or a Latin-Square and then 

assigning the levels of a second factor to subplots within each main plot.  
 
Note that randomization is a two-stage process. First, levels of factor A are randomized over the 
main plots and then levels of factor B are randomized over the subplots within each main plot. 
Each main plot may be considered as a block as far as factor B is concerned but only as an 
incomplete block as far as the full set of treatments is concerned because not every subplot has 
the same chance of receiving every treatment combination. 
 
This restriction in randomization results in the presence of two distinct error terms, one 
appropriate for the main plots (i.e. for testing the effect of factor A) and one appropriate for the 
subplots (i.e. for testing the effect of factor B). Ordinarily, the error term for the main plots is 
larger than it would be in a complete design since the main plots are larger, further apart, and 
encompass greater heterogeneity, while the subplot error is smaller than it would be in a 
complete design. Since the interactions are compared using the smaller subplot error, the 
precision in estimating interactions is usually increased in a split-plot design relative to a simple 
factorial. 
 
A typical example of a split-plot design is an irrigation experiment where irrigation levels are 
applied to large areas, and factors like varieties and fertilizers are assigned to smaller areas 
within particular irrigation treatments. The proper analysis of a split-plot design recognizes that 
treatments applied to main plots are subject to larger experimental errors than those applied to 
subplots; hence, different mean squares are used as denominators for the corresponding F ratios. 
This concept is explored here in terms of expected mean squares. 
 

In summary, in a split-plot design, the factor assigned to the subplots is the factor that requires 
smaller amounts of experimental material, that is of primary importance, that is expected to 

exhibit smaller differences, or for which greater precision is desired. 
 

 
12.2. Uses of Split-plot designs 

 
1. Split-plot designs (and a common variation, the split-block) are frequently used for factorial 
experiments in which the nature of the experimental material or the operations involved make it 
difficult to handle all factor combinations in the same manner. It may be used when the treatment 
levels associated with one of the factors require larger amounts of experimental material in than 
do treatment levels for other factors.  
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2. These designs are also used when the investigator wishes to increase precision in estimating 
certain effects and is willing to sacrifice precision in estimating other effects. The design usually 
sacrifices precision in estimating the average effects of the treatments assigned to main plots. It 
often improves the precision for comparing the average effects of treatments assigned to subplots 
and, when interactions exist, for detecting those interactions. This arises from the fact that the 
experimental error for main plots is usually larger than the experimental error used to compare 
subplot treatments. Usually, the error term for subplot treatments is smaller than would be 
obtained if treatments were randomly assigned to experimental units as combinations of factor 
levels (a one-stage randomization process). 
 
3. The design may also be useful when an additional factor is to be incorporated into an 
experiment to increase its scope. For example, suppose that the primary purpose of an 
experiment is to compare the effects of several seed protectants. To increase the scope of the 
experiment across a range of varieties, several varieties could be used as main plots and the seed 
protectants used as subplots. 
 

 
12.3. The split-plot design 
 
Suppose factor A is the main plot factor, with 3 levels, while factor B is the subplot factor, with 2 
levels. There are 4 reps per main plot. We will see how such an experiment could be arranged 
according to 3 different designs: 1. Factorial (no split), arranged as a CRD; 2. Split-plot, with 
main plots arranged as a CRD; and 3. Split-plot, with main plots arranged as an RCBD. 
 
 
12.3.1. Factorial (no split), arranged as a CRD 
 
This is a simple 3x2 factorial arranged as a CRD, like you've seen before. With 6 possible 
treatment combinations and 4 replications, 24 experimental units (e.g. plots in a field) are 
required. The six treatment combinations are randomly assigned to the plots in a single 
randomization process. The resulting field could look like this: 
 

a1b1 a2b2 a2b1 a1b2 a3b2 a1b1 a2b2 a2b1 a1b2 a3b2 a1b1 a3b2 

a2b2 a3b1 a1b2 a3b1 a1b2 a3b2 a2b1 a1b1 a2b2 a3b1 a2b1 a3b1 

 
 
12.3.2. Split-plot, with main plots arranged as a CRD 
 
In this scenario, the randomization process is divided into 2 stages. 
  
Stage 1: Randomize the levels of factor A over the main plots: 
 

a2 a3 a2 a1 a2 a3 a2 a3 a1 a3 a1 a1 

a2 a3 a2 a1 a2 a3 a2 a3 a1 a3 a1 a1 
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Stage 2: Randomize the levels of factor B over the subplots: 
 

a2b2 a3b2 a2b1 a1b1 a2b1 a3b2 a2b1 a3b2 a1b1 a3b1 a1b1 a1b2 

a2b1 a3b1 a2b2 a1b2 a2b2 a3b1 a2b2 a3b1 a1b2 a3b2 a1b2 a1b1 

 
 
12.3.3. Split-plot, with main plots arranged as an RCBD 
 
In this scenario, the randomization process is divided into 2 stages per block. 
 
Stage 1: Randomize the levels of factor A within each block. 
    

a2 a1 a3  a1 a2 a3  a1 a3 a2  a3 a2 a1 

a2 a1 a3  a1 a2 a3  a1 a3 a2  a3 a2 a1 

 
Stage 2: Randomize the levels of factor B over the subplots. 
 

a2b1 a1b1 a3b2  a1b2 a2b1 a3b2  a1b2 a3b1 a2b2  a3b1 a2b1 a1b1 

a2b2 a1b2 a3b1  a1b1 a2b2 a3b1  a1b1 a3b2 a2b1  a3b2 a2b2 a1b2 

 
In split-plot designs, the effect of Factor B (i.e. the difference between b1 and b2 values) is 
generally more consistent across the experiment due to their proximity to one another within 
each main plot. Another way of saying this is that there is usually a positive correlation between 
b1 and b2 values within each main plot. This results in a smaller variance among levels of Factor 
B than in a normal factorial experiment, thereby increasing the precision with which differences 
among levels of Factor B are detected. 
 
 
12.4. Linear models for the split-plot  

 
The linear model for the split-plot, with main plots arranged as a CRD, is: 
 

Yijk = μ + tAi + (tA:ρ)ij + tBk + (tA:tB)ik + εijk 
 
where 
 

i = 1,...,a indexes the main plot levels  
j = 1,...,r indexes the replications (ρ = "rho" = rep) 
k = 1,...,b indexes the subplot levels  

 
The variance associated with (tA:ρ)ij (i.e. 𝜎":$%&' ) is the correct error term for testing the main plot 
effects. The variance associated with εijk (i.e. ) is the correct error term for testing the subplot 
effects. Of the two, 𝜎":$%&'  is usually larger. 
 

2
es
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The linear model for the split-plot, with main plots arranged as an RCBD, is: 
 

Yijk = μ + tAi + βj + (tA:β)ij + tBk + (tA:tB)ik + εijk 
 
In this case, 
 

j = 1,...,r indexes the blocks 
 
and the extra term βj represents the effect of the jth block. 
 
 
12.5. Split-plot ANOVA  
 
The total degrees of freedom in a split-plot experiment are one less than the total number of 
subplots. In other words, dfTotal = rab – 1, where r = number of replications (in a CRD) or the 
number of blocks (RCBD), a = number of main plots, and b = number of subplots per main plot. 
The main plot (factor A) SS has dfMP = a – 1 and the subplot (factor B) SS has dfSP = b – 1. 
 
The main plot error 
 
The appropriate mean square error to test effects of the main plot factor is often called "error A" 
or MS(MPE) (i.e. mean square of the main plot error). This error is computationally equivalent 
to the Main plot x Replication interaction term in a CRD and to the Main plot x Block interaction 
in a RCBD. This error term is the appropriate error term for testing differences among levels of 
the main plot factor. 
 

CRD Main plot error = Main plot x Replication 
RCBD Main plot error = Main plot x Block 

 
Why is this the correct error term? From the perspective of the main plot (i.e. Factor A), the subplots 
are simply subsamples; so it is reasonable to average them when testing the main plot effects. 
 
Consider the case of the CRD. If the values of the subplots within each main plot are averaged, the 
resulting design is a simple CRD. We've never pointed it out, but what exactly IS the error term of a 
simple CRD? It's the Treatment:Replication interaction. So, like all CRD's, the appropriate error 
term is the Treatment:Replication interaction; but in order to use it, we must explicitly extract it from 
the error term and put it in the model. 
 
Now consider the case of a RCBD with one observation per block-treatment combination. If the 
values of the subplots within each main plot are averaged, the resulting design is a simple RCBD. 
Remember that in this case, the appropriate error term is the Block:Treatment interaction. Therefore, 
it makes sense to use this error term in the split-plot to compare the main plot effects. 
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The subplot error 
 
The appropriate mean square error to test effects of the subplot factor is often called "error B" or 
MS(SPE) (i.e. mean square of the subplot error). This error is computationally equivalent to the 
[Subplot : Replication + Main plot : Subplot : Replication] in a CRD and to [Subplot : Block + 
Main plot : Subplot : Block] in a RCBD. In either model, this is the residual error; in other 
words, it is the variation that is left after all other factors have been accounted for. This error 
term is the appropriate error term for testing significance of the subplot effect and the subplot x 
main plot interaction effect. 
 

CRD Subplot error = Subplot : Replication + Main plot : Subplot : Replication 
RCBD Subplot error = Subplot : Block + Main plot : Subplot : Block 

 
 
The general ANOVA table for the split-plot CRD: 
 

Source df SS MS F 
Total (subplots) rab - 1 SS   
Factor A a - 1 SSA MSA MSA/MS(MPE) 

Main plot error a(r - 1) SS(MPE) MS(MPE)  
Factor B b - 1 SSB MSB MSB/MS(SPE) 
A : B (a - 1)(b - 1) SS(A:B) MS(A:B) MS(A:B)/MS(SPE) 

Subplot error a(r - 1)(b - 1) SS(SPE) MS(SPE)  
 

The general ANOVA tables for the split-plot RCBD and the split-plot LS are similar to the CRD 
case and are given in Table 16.1 of ST&D (page 402). These different designs have no effect on 
the last four rows of the previous table. But the upper lines, corresponding to the main plot 
effects, do change: 
 

CRD RCBD Latin Square 
Total ra-1 Total ra-1 Total ra-1 
 
 
A 
Error A 

 
 
a-1 
a(r-1) 

 
Block 
A 
Error A 

 
r-1 
a-1 
(r-1)(a-1) 

Row 
Column 
A 
Error A 

a-1 
a-1 
a-1 
(a-1)(a-2) 

B 
A : B 
Error B 
Total 

b-1 
(a-1)(b-1) 
a(r-1)(b-1) 
rab-1 

B 
A : B 
Error B 
Total 

b-1 
(a-1)(b-1) 
a(r-1)(b-1) 
rab-1 

B 
A : B 
Error B 
Total 

b-1 
(a-1)(b-1) 
a(r-1)(b-1) 
rab-1 
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RCBD sample calculation: 
 

Subplot error df = Error B df = (B:Block + A:B:Block) df 
 = (b-1)(r-1) + (b-1)(a-1)(r-1) 
 = (b-1)(r-1)*[1+(a-1)] =  a(b-1)(r-1) 

 
And the corresponding lm() syntax for these models: 
 
CRD 
lm( Y ~ A + Rep:A + B + A:B ) 
 
RCBD 
lm( Y ~ Block + A + Block:A + B + A:B ) 
 
Latin Square 
lm( Y ~ Row + Col + A + Row:Col:A + B + A:B ) 
 
Replicated Latin Square (shared rows and columns) 
lm( Y ~ Square + Row + Col + A + Square:Row:Col:A + B + A:B ) 
 
 
12.6  Example of a split-plot with main plots arranged as an RCBD 
 
To illustrate this design, we will consider an experiment from Thomson et al. (Phytopathology 71: 
605-608) carried out to determine the effect of bacterial vascular necrosis on the root yield of sugar 
beets planted at different in-row spacings. The two factors in the experiment were inoculation 
(inoculated versus not inoculated with Erwinia carotovora) and in-row spacing between plants (4, 
6, 12, and 18 inches). The layout of this field experiment is shown on the next page. 
 
Note that in this experiment, the bacterial inoculation levels were applied to large plots (main plot 
or whole plot) and the spacing levels were assigned to small plots (subplots) within the main plots. 
There were two reasons for assigning inoculation levels to main plots: 1) To confine the inoculum 
as well as possible to its assigned plots (i.e. to avoid contaminating non-inoculated plants); and 2) 
To allocate precision in the experiment to where it is needed most (i.e. while large differences in 
yield are expected between healthy and diseased plants, relatively smaller differences in yield are 
expected due to in-row spacing effects). 
 
The two inoculation levels were randomly assigned to the main plots within each of the six 
blocks. As far as the main plot treatments are concerned, then, this is a simple RCBD. The 
subplot treatment levels (spacings) were then randomly assigned within each main plot. A 
separate randomization of subplot levels occurred within each main plot. 
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Figure: Split-plot field layout of the sugar beet root rot study. Each block contains 2 main plots, 
to which the inoculation treatment levels were assigned (Inoculation, No Inoculation). Each main 
plot is split into 4 subplots, to which the in-row spacing levels were assigned (4, 6, 12, and 18 
inches). The yields of the subplots are shown in italics. 
 

Block          

VI 
4 12 18 6   6 12 4 18 

21.0 22.9 23.1 22.0   17.6 16.1 16.8 13.1 
 No inoculation  Inoculation 
          

V 
18 6 4 12   6 4 12 18 

12.9 19.8 17.2 16.8   21.2 17.9 22.3 22.0 
 Inoculation  No inoculation 
          

IV 
6 18 4 12   12 18 6 4 

21.1 21.4 18.4 22.8   16.1 14.7 16.3 16.8 
 No inoculation  Inoculation 
          

III 
18 12 4 6   18 6 12 4 

19.3 18.6 18.2 20.8   12.5 19.1 16.6 16.5 
 No inoculation  Inoculation 
          

II 
12 6 18 4   4 12 18 6 

14.9 17.0 12.1 16.4   17.9 21.1 20.1 19.6 
 Inoculation  No inoculation 
          

I 
4 12 18 6   18 12 6 4 

17.4 16.3 12.5 17.3   20.0 21.8 20.2 20.1 
 Inoculation  No inoculation 

 
 
 
12.6.1  Analysis for this experiment 
 
sugar_bad_mod<-lm(yield ~ A_inoc + block + A_inoc:block + B_space + 

A_inoc:B_space, sugar_dat) 
anova(sugar_bad_mod) 
 
The above command follows the linear model specified on the previous page and therefore 
seems to be a reasonable approach to analyzing this particular dataset. If you run this code, you 
obtain the following output: 
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Analysis of Variance Table 
 
Response: yield 
               Df  Sum Sq Mean Sq  F value    Pr(>F)     
A_inoc          1 256.687 256.687 327.6165 < 2.2e-16 *** <--WRONG! 
block           5  16.250   3.250   4.1481  0.005541 **  <--WRONG! 
 
A_inoc:block    5  11.535   2.307   2.9445  0.028023 *   <--MP error 
 
B_space         3  39.638  13.213  16.8634 1.320e-06 *** 
A_inoc:B_space  3  64.438  21.479  27.4144 9.838e-09 *** 
Residuals      30  23.505   0.783 
 
Programmed in this way, all the effects in the model are being tested with the residual error 
(0.783, df = 30). Unfortunately, this is the incorrect error term for testing the effect of the main 
plot (A_inoc) and the Block factors, as can be seen in the following table of expected mean 
squares: 
 
Source Expected Mean Square 
 
         Block                   Var(Error) + 4 Var(Block:A_Inoc) + 8 Var(Block) 
         A_Inoc                  Var(Error) + 4 Var(Block:A_Inoc) + Q(A_Inoc,A_Inoc:B_Space) 
         Block:A_Inoc            Var(Error) + 4 Var(Block:A_Inoc) 
         B_Space                 Var(Error) + Q(B_Space,A_Inoc:B_Space) 
         A_Inoc:B_Space          Var(Error) + Q(A_Inoc:B_Space)  
 

The appropriate error term for A is Block:A 
The appropriate error term for B and A:B is the residual error 

 
To obtain the correct F and p-values for the main plot factor and the blocks, you need to tell R to 
test those factors with the appropriate error term, namely A:Block. An easy way to do this is to 
use the aov() function: 
 
sugar_good_mod<-aov(yield ~ A_inoc + block + Error(A_inoc:block) + B_space + 

A_inoc:B_space, sugar_dat) 
summary(sugar_good_mod) 
 
The result of this line of code is: 
 
Error: A_inoc:block 
          Df Sum Sq Mean Sq F value   Pr(>F)     
A_inoc     1 256.69  256.69 111.265 0.000132 *** 
block      5  16.25    3.25   1.409 0.358023     
Residuals  5  11.54    2.31                      
 
Error: Within 
               Df Sum Sq Mean Sq F value   Pr(>F)     
B_space         3  39.64  13.213   16.86 1.32e-06 *** 
A_inoc:B_space  3  64.44  21.479   27.41 9.84e-09 *** 
Residuals      30  23.50   0.783 
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Using the wrong error term before, we concluded that there were significant yield differences 
among blocks and highly a significant effect of inoculation (main plot p < 2.2e-16). Now, using 
the correct error term for these effects, we see that the differences among blocks are not 
significant and the effect of inoculation is twelve orders of magnitude smaller than we thought (p 
= 1.32e-4)! 
 
Putting everything together, we arrive at this final ANOVA table for the sugar beet root rot 
study: 
 
 

Source df SS MS F 
Total (subplots) 47 412.06   
  Block 5 16.26 3.25 1.41 NS 
  Inoculation (A) 1 256.69 256.69 111.26 *** 
      Error A (Block:A) 5 11.54 2.31  
  Spacing (B) 3 39.64 13.21 16.86 *** 
  Interaction (A:B) 3 64.44 21.48 27.41 *** 
      Error B 30 23.50 0.78  

 
Notice: MSEA (2.31) > MSEB (0.78) 

 
Interpretation: Note that the mean square for Error A (2.31) is greater than the mean square for 
Error B (0.78). The coefficient of variation (CV) for the main plots is 8.3% [(Ö2.31/18.26) x 
100]; for the subplots, it is 4.8% [(Ö0.78/18.26) x 100]. This is usual for split-plot experiments. 
In a factorial experiment, the interaction of the treatment factors is usually of primary 
importance, and this reduced Error-B increases the chance of detecting such interactions. In this 
particular case, the interaction between inoculation and spacing is highly significant. This 
indicates that the magnitude of the difference between inoculation treatments depends on in-row 
spacing, and vice-versa. For example, the difference for the 4 inch spacing between inoculated 
and non-inoculated plots was 2.1 tons/acre, while an 8 tons/acre difference was observed at the 
18-inch spacing. The significant interaction effect implies that the difference between levels of 
one factor depends on the level of the other factor. For this fixed-effects study, such a result 
dictates that subsequent analysis be performed on the simple effects of each factor. 
 
 
12.6.4  Mean comparisons 
 
Comparing group means in a split-plot design is more complicated than in those designs which 
involve only a single error term for all factors. When performing a means separation analysis, 
there are four distinct minimum significant differences that are possible, depending on the nature 
of the desired comparisons. The possible comparisons: 
 
If the interaction between main plot and subplot is not significant  

12.6.4.1  Comparisons among main plot levels 
12.6.4.2  Comparisons among subplot levels 
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If interaction between main plot and subplot is significant  
12.6.4.3  Comparisons among subplot levels within a main plot level  
12.6.4.4  Comparisons among main plot levels within a subplot level 
12.6.4.5  Comparisons among subplot levels across different main plot levels   
 
 

12.6.4.1  Main plot comparisons in the absence of an interaction 
 
If no significant interaction is detected between main plot and subplot effects, it is valid to 
compare each factor disregarding the levels of the other factor (i.e. to analyze the main effects). 
For didactic purposes, we will use the previous example even though a significant interaction 
was found. 
 
A valid comparison among the means of the main plot levels requires the appropriate error 
variance (MSBlock:A = 2.307). 
 
MP_comparison<-LSD.test(sugar_dat$yield, sugar_dat$A_inoc, DFerror = 5, 

MSerror = 2.307) 
MP_comparison 
 
 
The output: 
 
     Mean      CV MSerror      LSD 
  18.2625 8.31694   2.307 1.127106 
 
  trt  means M 
1   0 20.575 a 
2   1 15.950 b 
 
 
Note that the MSE used (2.307) is the Block:A_Inoc mean square, as specified. In this particular 
case, this test is uninformative because there are only two main plots. It is included here only as 
an example. 
 
Incidentally, just like the means comparison tests, any orthogonal contrasts must also specify the 
correct error term! Example:  
 
# Contrast ‘No_Inoc vs. Inoc’   1,-1 
contrastmatrix<-cbind(c(1,-1)) 
contrasts(sugar_dat$A_inoc)<-contrastmatrix 
 
sugar_contrast_mod<-aov(yield ~ A_inoc + block + Error(A_inoc:block) + 

B_space + A_inoc:B_space, sugar_dat) 
summary(sugar_contrast_mod, split = list(A_inoc = list("No_inoc vs. Inoc" = 

1))) 
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12.6.4.2  Subplot comparisons in the absence of an interaction 
 
To compare subplots, it is not necessary to specify ERROR B because it is the residual error (the 
default MSE for all F tests): 
 
SP_comparison<-LSD.test(sugar_dat$yield, sugar_dat$B_space, DFerror = 30, 

MSerror = 0.7835) 
SP_comparison 
 
The output: 
 
     Mean       CV MSerror      LSD 
  18.2625 4.846847  0.7835 0.738002 
 
  trt    means M 
1  6  19.33333 a 
2  12 18.85833 a 
3  4  17.88333 b 
4  18 16.97500 c 
 
Note the different MSE used.  
 
 
12.6.4.3  Comparisons among subplot levels within a common main plot level  
 
If the main plot:subplot interaction is significant, we are not justified in carrying out the above 
analyses of main effects. Instead, we are interested in the simple effects of each factor. 
 
When the A:B interaction is significant, the most usual subsequent analysis is that of subplot 
effects within the different levels of the main plot factor. In the previous example, there is a 
significant interaction between main plot and subplot effects; so it is appropriate to analyze the 
simple effects. To analyze the differences among the four spacing treatments within each 
inoculation level, the following code can be used:  
 
no_inoc_dat<-subset(sugar_dat, A_inoc == 0) 
no_inoc_mod<-lm(yield ~ block + B_space, no_inoc_dat) 
MP_comp1<-LSD.test(no_inoc_mod, "B_space") 
MP_comp1 
 
inoc_dat<-subset(sugar_dat, A_inoc == 1) 
inoc_mod<-lm(yield ~ block + B_space, inoc_dat) 
MP_comp2<-LSD.test(inoc_mod, "B_space") 
MP_comp2 
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The output: 
 
The ANOVAS for Inoculation = 0 and Inoculation = 1 both showed a significant effect of in-row 
spacing on yield. The LSD means separations obtained in each case are:  
 
A_inoc = 0 
alpha: 0.05 ; Df Error: 15  
Mean Square Error: 0.8465556 
Critical Value of t: 2.13145  
Least Significant Difference 1.13225 
 
Groups, Treatments and means 
a   12   21.58  
a   18   20.98  
a   6    20.82  
b   4    18.92 
 
 
A_inoc = 1 
alpha: 0.05 ; Df Error: 15  
Mean Square Error: 0.7204444 
Critical Value of t: 2.13145  
Least Significant Difference 1.044515 
 
Groups, Treatments and means 
a   6    17.85  
ab   4    16.85  
b   12   16.13  
c   18   12.97 
 
Notice that the subplot error used in the original analysis (MSE = 0.7835) is just the average of 
the MSE's of these two simple effects ANOVAs. 
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12.6.4.4  Comparisons among main plot levels within a common subplot level 
 
Another possible set of comparisons to make is among main plots levels within a common 
subplot level. The following statements can be added to the previous program to test the 
differences between the inoculation levels within each spacing level: 
 
sp_4_dat<-subset(sugar_dat, B_space == 4) 
sp_4_mod<-lm(yield ~ block + A_inoc, sp_4_dat) 
SP_comp1<-LSD.test(sp_4_mod, "A_inoc") 
SP_comp1 
 
sp_6_dat<-subset(sugar_dat, B_space == 6) 
sp_6_mod<-lm(yield ~ block + A_inoc, sp_6_dat) 
SP_comp2<-LSD.test(sp_6_mod, "A_inoc") 
SP_comp2 
 
sp_12_dat<-subset(sugar_dat, B_space == 12) 
sp_12_mod<-lm(yield ~ block + A_inoc, sp_12_dat) 
SP_comp3<-LSD.test(sp_12_mod, "A_inoc") 
SP_comp3 
 
sp_18_dat<-subset(sugar_dat, B_space == 18) 
sp_18_mod<-lm(yield ~ block + A_inoc, sp_18_dat) 
SP_comp4<-LSD.test(sp_18_mod, "A_inoc") 
SP_comp4 
 
Note that the residual error here is automatically the mean square of the Block:A interaction, 
which is the correct error for main plot comparisons. 
 
 
12.6.4.5  Mixed Comparisons: Comparisons between subplot levels across different main 

plot levels   
 
The comparison of subplot means across different main plot levels is more difficult because the 
comparisons are across two separate levels of the experiment (across subplots and across main 
plots), each of which has its own appropriate error term. In the case of such mixed comparisons, 
the accepted protocol is to create an error term (MSEMix) that is a weighted average of MSEA and 
MSEB, with emphasis on MSEB. Such comparisons require hand computations. 
 
The appropriate weighted error is: 
 

 

 
Each of the two error terms in the original analysis (MSEA and MSEB) also each have their 
critical t values, based on their different degrees of freedom. The accepted protocol for such 
mixed comparisons is to generate an intermediate t value between the t value for the main plot 
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(tA, 5 df = 2.571) and that for the subplot (tB, 30 df = 2.042). The formula to calculate this 
intermediate t value is (ST&D page 404): 
 

 

 
Note that this tMix value is between tA and tB. 
 
With this weighted error term and its associated weighted critical t value, the LSD minimum 
significant difference can be calculated: 
 

 

 
If the absolute value of the difference between the means being compared is larger than this 
critical value, H0 is rejected (i.e. one concludes that there are significant differences between the 
subplot means in the different main plot levels). 
 
For example, if we want to compare the mean of inoculated / spacing 4 = 16.85 with the mean of 
not inoculated / spacing 6 = 20.82: 
 

|20.82 - 16.85| = 4.32 
Since 4.32 > 1.436   Þ   This difference is significant 

 
 
 
12.7  Split-split plot design 
 
The concept of the split-plot design is easily extended to three factors. Here, more options 
present themselves, based on the manner in which these three factors are assigned to the 
hierarchy of plots: 
 
1. Split-plot with factorial main plot: Combinations of levels of Factors A and B are assigned 

to main plots, levels of Factor C to subplots within each mainplot. 
2. Split-plot with factorial subplot: Levels of Factor A are assigned to main plots, 

combinations of levels of Factors B and C are assigned to subplots. 
3. Split-split plot: Levels of Factor A are assigned to main plots, levels of Factor B to subplots 

within each mainplot, and levels of Factor C to sub-subplots within each subplot. 
 
The first two designs are the same as the split-plots discussed before, except now the levels of 
the mainplots or subplots are themselves combinations of two factors. The addition of a third 
factor by splitting subplots of a split-plot design results in a split-split plot design  (#3 above). 
This technique is often quite useful for a three-factor experiment to facilitate field operations or 
when it is desirable to keep certain treatment combinations together. However, the additional 
restriction on randomization makes it necessary to compute a third unique error term that is 
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used to test for main effects of the factor applied to the second split and for all interactions 
involving this factor. So, while the design may have certain advantages in terms of physical 
operations with the experimental units, the necessity of a third error term can make means 
separations complicated. 
 
The randomization procedure follows the procedure for the split-plot design. Then, the subplots 
are split into sub-subplots, equal in number to the levels of the third factor, to which the levels of 
the third factor are randomly assigned. This operation requires an independent randomization 
within each subplot. 
 
The following figure from Little & Hills illustrates the layout of a split-split plot to evaluate the 
effects of dates of planting (A), aphid control (B), and date of harvest (C) on the control of an 
aphid-borne sugar beet virus. The diagram is presented such that each block shows the results of 
each stage of the randomization process. 

 
Block I Block II 

   A1 A3 A2 

Block III Block IV 
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B1 
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The analysis of variance for the split-split plot design is an extension of the split-plot case. The 
various error terms are constructed by pooling together different sources of variation. 

 
Level One: 
 Block 
 A 
  Tested using (Block:A) = Error A 
 
Level Two: 
 B 
 A*B 
  Tested using (Block:B + Block:A:B) = Block*B(A) = Error B 
 
Level Three: 
 C 
 A*C 
 B*C 
 A*B*C 
  Tested using (Block:C + Block:A:C + Block:B:C + Block:A:B:C) = residual error 
   = Error C 
 
What this means is that a full analysis requires specifying two special error terms for custom F 
tests, in addition to the model's residual error. Unfortunately, the aov() function only permits the 
specification of ONE custom error term. There are several options as to how to proceed. One 
strategy is to run a couple of different aov() models and combine the results into a final ANOVA 
table: 
 
Model 1: Testing the main plot effects 
 
split_split_MP_mod<-aov(Y ~ A + Block + 
  Error(A:Block) + 
  B + A:B + 
  C + A:C + B:C + A:B:C, 
  split_split_dat) 
summary(split_split_MP_mod) 
 
The resulting ANOVA table: 
 
Error: A:Block 
          Df Sum Sq Mean Sq F value  Pr(>F)    
A          3 251.49   83.83   12.50 0.00543 ** 
Block      2 275.43  137.72   20.54 0.00207 ** 
Residuals  6  40.23    6.70                    
 
Error: Within 
          Df Sum Sq Mean Sq F value   Pr(>F)     
B          1  200.3  200.28  52.369 8.80e-09 ***  ß WRONG!! 
C          2  388.1  194.05  50.742 1.06e-11 ***  ß WRONG!! 
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A:B        3    2.5    0.83   0.216    0.885  ß WRONG!! 
A:C        6   29.4    4.89   1.280    0.288  ß WRONG!!    
B:C        2    2.1    1.05   0.275    0.761  ß WRONG!!    
A:B:C      6   16.6    2.76   0.722    0.634  ß WRONG!!    
Residuals 40  153.0    3.82                      
 
Model 2: Testing the subplot effects 
 
split_split_SP_mod<-aov(Y ~ A + Block + 
  A:Block + 
  B + A:B + 
  Error(A:B:Block) + 
  C + A:C + B:C + A:B:C, 
  split_split_dat) 
summary(split_split_SP_mod) 
 
The resulting ANOVA table: 
 
Error: A:B:Block 
          Df Sum Sq Mean Sq F value   Pr(>F)     
A          3 251.49   83.83  51.133 1.46e-05 *** ß WRONG!! 
Block      2 275.43  137.72  84.002 4.27e-06 *** ß WRONG!! 
B          1 200.28  200.28 122.162 4.00e-06 *** 
A:Block    6  40.23    6.70   4.090   0.0355 *   ß WRONG!! 
A:B        3   2.48    0.83   0.503   0.6906     
Residuals  8  13.12    1.64                      
 
Error: Within 
          Df Sum Sq Mean Sq F value   Pr(>F)     
C          2  388.1  194.05  44.400 5.88e-10 *** 
A:C        6   29.4    4.89   1.120    0.373     
B:C        2    2.1    1.05   0.241    0.787     
A:B:C      6   16.6    2.76   0.632    0.704     
Residuals 32  139.9    4.37                      
 
Combining the results into a complete table: 
 
          Df Sum Sq Mean Sq F value   Pr(>F)    
A          3 251.49   83.83   12.50  0.00543 ** 
Block      2 275.43  137.72   20.54  0.00207 ** 
 A:Block   6  40.23    6.70                     . 
B          1 200.28  200.28 122.162 4.00e-06 *** 
A:B        3   2.48    0.83   0.503   0.6906     
 A:B:Block 8  13.12    1.64                     .                     
C          2  388.1  194.05  44.400 5.88e-10 *** 
A:C        6   29.4    4.89   1.120    0.373     
B:C        2    2.1    1.05   0.241    0.787     
A:B:C      6   16.6    2.76   0.632    0.704     
 Error    32  139.9    4.37                      
 



 18 

Another way to do it is to obtain the SS for all the factors in the linear model and then carry out 
the custom F-tests manually. For this, one would specify the full model: 
 
split_split_mod<-aov(Y ~ A + Block + 
  A:Block + 
  B + A:B + 
  B:Block + A:Block:B + 
  C + A:C + B:C + A:B:C, 
  split_split_dat) 
summary(split_split_mod) 
 
 
The resulting ANOVA table: 
 
            Df Sum Sq Mean Sq F value   Pr(>F)     
A            3  251.5   83.83  19.180 2.66e-07 *** 
Block        2  275.4  137.72  31.510 2.74e-08 *** 
B            1  200.3  200.28  45.824 1.19e-07 *** 
C            2  388.1  194.05  44.400 5.88e-10 *** 
A:Block      6   40.2    6.70   1.534    0.199     
A:B          3    2.5    0.83   0.189    0.903     
Block:B      2    0.7    0.35   0.079    0.924     
A:C          6   29.4    4.89   1.120    0.373     
B:C          2    2.1    1.05   0.241    0.787     
A:Block:B    6   12.4    2.07   0.474    0.823     
A:B:C        6   16.6    2.76   0.632    0.704     
Residuals   32  139.9    4.37 
 
 
To test the main plot effect (A): 

F = 83.83/6.70 = 12.50 p(12.50,3,6) = 0.00543 
 
To test the subplot effect (B): 

F = 200.28/[(0.7+12.4)/(2+6)] = 122.162 p(122.162,1,8) = 4.00e-06 
 
To test the interaction (A:B): 

F = 0.83/[(0.7+12.4)/(2+6)] = 0.507 p(0.507,3,8) = 0.69 
 
 
A complete analysis of a split-split plot example is discussed in Little and Hills. 
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12.8  Strip-plot (or split-block) design 
 
In the strip-plot or split-block design, the subunit treatments are applied in strips 

across a complete set (replication) of main plot levels. 
 

Below is a comparison of the layouts for a 5x4 split-plot design and a 5x4 strip-plot design (only 
one replication, or block, is shown). Although the terms main plot and subplot are still used, 
from a theoretical perspective there is no longer any difference between the two (i.e. they are 
symmetric; there is no logical hierarchy to them). 
 
 Split-plot Strip-plot (or split-block) 
 

A3 A2 A1 A5 A4  A3 A2 A1 A5 A4 
B2 B1 B2 B3 B4  B2 B2 B2 B2 B2 
B1 B3 B1 B2 B3  B4 B4 B4 B4 B4 
B3 B2 B4 B4 B1  B1 B1 B1 B1 B1 
B4 B4 B3 B1 B2  B3 B3 B3 B3 B3 

  
 
Note that the subunit treatments are contiguous across the entire block or main plot, and thus 
each subunit treatments "split" the block. This design is also called a strip-plot, as both A and B 
treatments are in strips. The A and B treatments are independently randomized within each 
replication. 
 
 
12.8.1  Reasons for arranging an experiment as a strip-plot design 
 
1. Physical operations (e.g. tractor manipulation, irrigation, harvesting) may be easier. 
 
2. The design tends to reduce precision in testing the main effects but improves precision in 

detecting interaction effects, which may be the most important objective of the experiment. 
 
 
12.8.2  Linear model for the strip-plot design 
 

Yijk = μ + tAi + tBj + βk + (tA:β)ik + (tB:β)jk + (tA:tB)ij + εijk 
 
where 
 

i = 1,...,a indexes the main plot levels 
j = 1,...,b indexes the subplot levels 
k = 1,...,r indexes the blocks 

 
The extra term (tB:β)jk represents the interaction effect of subplot levels with blocks. In the split-
plot model, this (tB:β)jk term was not specified; so the variation ascribed to this term was 
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included in the Subplot error [MS(SPE) = Subplot : Replication + Main plot : Subplot : 
Replication] (see topic 12.5). 
 
 
12.8.3  ANOVA for the split-block design 
 
In the strip-plot design, the subplot error for testing the main effect of Factor B is MS(StPE) = 
Subplot x Block. This test is symmetric to the test for Factor A, where SS(MPE) = Main plot x 
Block is the denominator of the F test. This is a reasonable result, considering that in the split-
block design the randomization procedures for both factors are symmetric. Another way to think 
about this error term is to consider the average of all main plots within each subplot. Averaging 
in this way results in an RCBD for Factor B with one replication per cell. As we have seen 
before, the appropriate error term in this case is the MS of Factor B x Block. 
 
The general ANOVA table for the RCBD strip-plot design: 
 

Source df SS MS F 
Total rab - 1 TSS   
Block r - 1 SS(Block)   
Factor A a - 1 SSA MSA MSA / MS(MPE) 
  MSEA= A:Block (a - 1)(r - 1) SS(MPE) MS(MPE)  
Factor B b - 1  SSB MSB MSB / MS(StPE) 
  MSEB= B:Block (b - 1)(r - 1) SS(StPE) MS(StPE)  
A x B (a - 1)(b - 1) SS(A:B) MS(A:B) MS(A:B) / MS(SPE) 
  MSEAB =A:B:Block (a-1)(r-1)(b-1) SS(SPE) MS(SPE)  

 
This new error term, the mean square of the strip-plot error MS(StPE), is subtracted from the 
subplot error (MSEAB), taking (r-1)(b-1) degrees of freedom from that error. The result of this 
subtraction is a smaller MSEAB, which is the error term used to test the interaction AxB. This 
results in an improved precision in the tests for interaction effects. 
 
 
12.8.4  Example of a split-block (modified from Little and Hills, Chapter 10) 

 
The following figure gives the layout of an experiment designed to examine the effect of 
nitrogen fertilizer rate on sugar beet root yield at various harvest times. The main plots are four 
nitrogen fertilizer rates, arranged as an RCBD with two blocks. The subplot treatment levels are 
five dates of harvest. The subplots to be harvested at each date span continuous strips across a 
full set of main plot levels. The harvest date strips, orthogonal to the N fertilizer strips, are also 
randomized within each of the two blocks. The strip-plot design is helpful here because harvest 
operations are easier to conduct when the plots to be harvested on a certain date lie along one 
continuous pass. 
 
The root yield in tons per acre for each subplot are given in the diagram on the next page. 
Internal dashed lines emphasizing the main plot randomization (Nitrogen levels N0, 80, 160, and 
320) are shown in Block I; internal dashed lines emphasizing the split-plot randomization 
(Harvest levels 1 – 4) are shown in Block II. 
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 Block I     Block II 
 H4 H5 H1 H3 H2     H4 H2 H3 H5 H1 

N80 26.4 29.3 10.1 23.1 18.2   N160 34.2 18.5 22.4 30.3 10.8 
N320 31.2 34.2 10.3 25.9 19.2   N0 21.3 12.5 16.7 19.1 5.2 
N160 28.0 31.2 10.2 22.3 16.9   N80 29.5 16.9 20.4 26.6 9.5 
N0 10.1 11.4 2.3 9.8 8.8   N320 31.9 17.8 22.8 29.2 7.4 

 
 
12.8.4.1  R code for a strip-plot (split-block) design 
 
Again, we are in situation where the results from two separate models must be combined to 
produce a complete and correct ANOVA table. 
 
#The ANOVA to test A 
split_blockA_mod<-aov(yield ~ A_nitrogen + block + 
 Error(A_nitrogen:block) + 
 B_harvest + 
 B_harvest:block + 
 A_nitrogen:B_harvest, 
 split_block_dat) 
 
#The ANOVA to test B 
split_blockB_mod<-aov(yield ~  A_nitrogen + block + 
 A_nitrogen:block + 
 B_harvest + 
 Error(B_harvest:block) + 
 A_nitrogen:B_harvest, 
 split_block_dat) 
 
 
 
The resulting ANOVA tables: 
 
Error: A_nitrogen:block 
           Df Sum Sq Mean Sq F value Pr(>F)   
A_nitrogen  3  838.3  279.43   7.506  0.066 . 
block       1   14.5   14.52   0.390  0.577   
Residuals   3  111.7   37.23                  
 
Error: Within 
                     Df Sum Sq Mean Sq F value   Pr(>F)     
B_harvest             4 1898.9   474.7 375.434 1.73e-12 *** 
block:B_harvest       4   42.8    10.7   8.459 0.001748 **  
A_nitrogen:B_harvest 12  121.0    10.1   7.976 0.000536 *** 
Residuals            12   15.2     1.3                      
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Error: B_harvest:block 
          Df Sum Sq Mean Sq F value  Pr(>F)    
block      1   14.5    14.5   1.357 0.30872    
B_harvest  4 1898.9   474.7  44.382 0.00144 ** 
Residuals  4   42.8    10.7                    
 
Error: Within 
                     Df Sum Sq Mean Sq F value   Pr(>F)     
A_nitrogen            3  838.3  279.43 220.983 9.19e-11 *** 
A_nitrogen:block      3  111.7   37.23  29.441 8.14e-06 *** 
A_nitrogen:B_harvest 12  121.0   10.09   7.976 0.000536 *** 
Residuals            12   15.2    1.26                      
 
Combining results into a final ANOVA table: 
 
            Df  Sum Sq  Mean Sq  F value    Pr(>F)   
A_nitrogen   3   838.3   279.43    7.506     0.066 . 
 A:Block     3   111.7    37.23                  
 
B_harvest    4  1898.9    474.7   44.382   0.00144 ** 
 B:Block     4    42.8     10.7                    
 
A:B         12   121.0     10.1    7.976  0.000536 *** 
 Error      12    15.2      1.3                      
 
Our conclusions? The interaction Nitrogen: Harvest date is highly significant. Therefore, even 
though no significant differences were detected among Nitrogen levels, we do not accept this 
result; it is necessary to examine the simple effects. Similarly, even though significant 
differences were found among harvest dates, we do not accept this result; it is necessary to 
examine the simple effects. 
 
----- 
 
For the sake of covering one more concept here, let’s assume the interaction was found to be 
non-significant, thereby justifying an analysis of the main effects. In this scenario, notice that the 
F test for the nitrogen levels is almost significant. Because four levels of nitrogen were tested, 
the resulting SS can be partitioned into its linear, quadratic, and cubic components. It is not easy 
to write a contrast for these effects because the selected levels of nitrogen are not equally spaced. 
However, as shown in the lab handout for Topics 4&5, this problem can be overcome using a 
multiple regression approach. In this example, the following simplified program can be used to 
partition the Nitrogen sum of squares into its three components: 
 
#To perform a trend analysis of A_nitrogen using a multiple regression 
#approach,first re-load the dataset and maintain A_nitrogen as an 
#integer (not a factor); then: 
A_nit<-split_block_dat$A_nitrogen 
A_nit2<-A_nit^2 
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A_nit3<-A_nit^3 
A_nit4<-A_nit^4 
anova(lm(yield ~ A_nit + A_nit2 + A_nit3 + A_nit4, split_block_dat)) 
 
The output: 
 
Response: yield 
          Df  Sum Sq Mean Sq F value  Pr(>F)    
A_nit      1  508.21  508.21  8.3005 0.00664 ** 
A_nit2     1  290.19  290.19  4.7396 0.03611 *  
A_nit3     1   39.90   39.90  0.6517 0.42481    
Residuals 36 2204.14   61.23 
 
 
Things look good. The addition of the linear component (508.21), the quadratic component 
(290.19), and the cubic component (39.90) equals the total sum of squares for Nitrogen (838.30) 
from the previous model. So why is everything crossed out? Because, like before, the appropriate 
error term for these tests is the Block:A interaction. A_Nitrogen is not a class variable (it is a 
regression variable), so we have no way of telling R to use the Block:A interaction as an arror 
term. The result? It must be done by hand. 

 
The following function makes custom F tests relatively easy: 
 
customF <- function(x) { 
  SS_num=x[1] 
  df_num=x[2] 
  SS_den=x[3] 
  df_den=x[4] 
  Fvalue<-(SS_num/df_num)/(SS_den/df_den) 
  pFvalue<-pf(Fvalue,df_num,df_den,lower.tail=FALSE) 
  print(pFvalue)   
} 
 
#To use: 
#customF(c(SS_num, df_num, SS_err, df_err)) 
 
 
The manually-adjusted ANOVA table, featuring the appropriate F tests, shows a significant (p < 
0.05) linear effect: 
 
Response: yield 
          Df  Sum Sq Mean Sq  Pr(>F)    
A_nit      1  508.21  508.21   0.034 * 
A_nit2     1  290.19  290.19   0.068 .  
A_nit3     1   39.90   39.90   0.377 NS   
Block:A    3   111.7   37.23 
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As mentioned above, the study of the simple effects of Nitrogen at each Harvest date and the 
simple effects of Harvest date at each Nitrogen level would be the appropriate continuation of 
this study. This same partitioning of the Nitrogen SS could be conducted within that simple 
effects analysis. 
 
 
What about the correct error term for Block? 
 
Consider the following table of expected mean squares for this split-block RCBD: 

 
 

Source     Expected Mean Square 
 
Block                   Var(Err) + 4 Var(Block*B) + 5 Var(Block*A) + 20 Var(Block) 
 
Nitrogen_A              Var(Err) + 5 Var(Block*A) + Fixed_effect(A) 
 
Block*Nitrogen_A        Var(Err) + 5 Var(Block*A) 
 
Harvest_B               Var(Err) + 4 Var(Block*B) + Fixed_effect(B) 
 
Block*Harvest_B         Var(Err) + 4 Var(Block*B) 
 
Nitrogen_A*Harvest_B    Var(Err) + Fixed_effect(A*B) 
 
 

Block:A is the correct error for A 
Block:B is the correct error for B 
A synthetic F test is required for Block 

 


