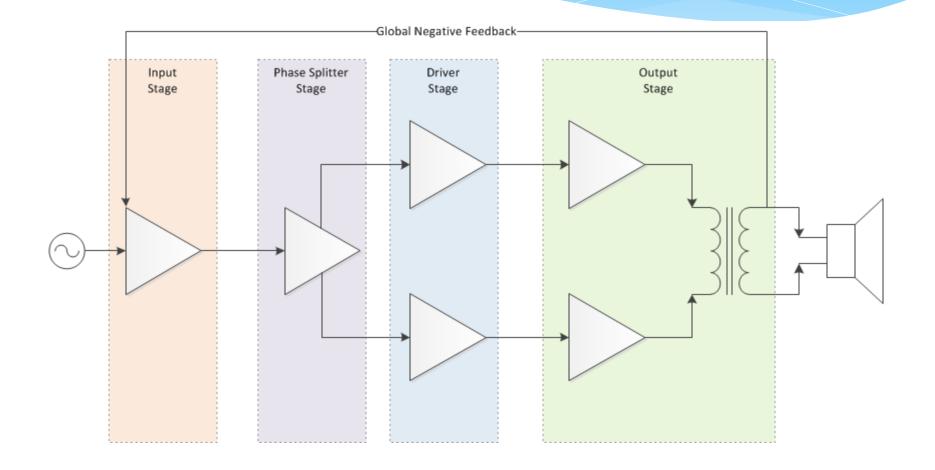
Vacuum Tube Amplifier

TEAM MEMBERS: MATT ANDREWS AND YURIY KHARIN PROJECT ADVISER: DR. MICHAEL CARTER

ECE791 FALL 2010

Objective

- * The objective of this project is to become familiar with vacuum tubes and vacuum tube amplifiers
- As seniors in electrical engineering and having had an experience with solid state transistors in the classroom and laboratory, we want to explore an alternative way of electrical signal amplification


Why the vacuum tubes are still in use

- * Very Linear even when driven in saturation region
- * Can be used in high voltage circuits
- Able to withstand over-voltage and a lot of heat for minutes where transistors would blow out in milliseconds
- Subjectively has "warmer" sound based on numerous Audiophiles

- * Design and build audio vacuum tube amplifier
- * Design and build the power supply
- * 25 Watts
- * 4 stages
- * Be able to drive an 8 ohm speaker

Block Diagram of the Amplifier

Design Approach

- * Specify Output Power with a given input signal
- * Choose Operation configuration and mode
- * Determine whether phase splitter is needed
- Determine required voltage gain
- * Design Power Supply

Design Approach

PUSH-PULL CLASS AB1 AMPLIFIER, VALUES FOR TWO TUBES

Plate Voltage	360	360	450	Volts
Screen Voltage	270	270	400	Volts
Grid-Number 1 Voltage	-22.5	22.5	37	Volts
Peak AF Grid-to-Grid Voltage	45	45	70	Volts
Zero-Signal Plate Current.	88	88	116	Milliamperes
Maximum-Signal Plate Current	132	140	210	Milliamperes
Zero-Signal Screen Current.	5.0	5.0	5.6	Milliamperes
Maximum-Signal Screen Current	15	11	22	Milliamperes
Effective Load Resistance, Plate-to-Plate	6600	3800	5600	Ohms
Total Harmonic Distortion	2	2	1.8	Percent
Maximum-Signal Power Output	26.5	18	55	Watts

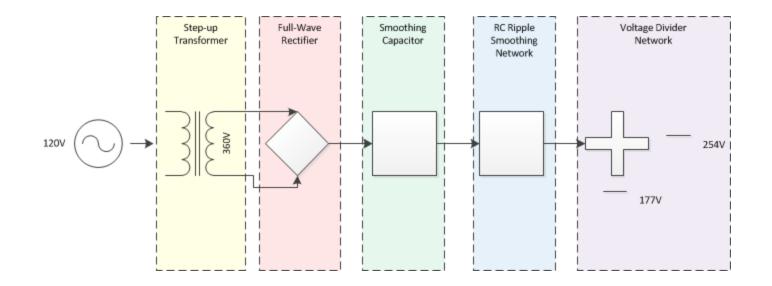
Input Stage

- High Input Impedance
- * One half of a 6SN7 dual triode
- * Common Cathode Configuration
- Provides some voltage gain

Phase Splitter

- * Needed for Push-Pull Configuration
- * Splits single signal into two signals
- * Equal Magnitude, Opposite phase
- Concertina Type
- * Equal Resistors at cathode and anode
- * One half of 6SN7 tube

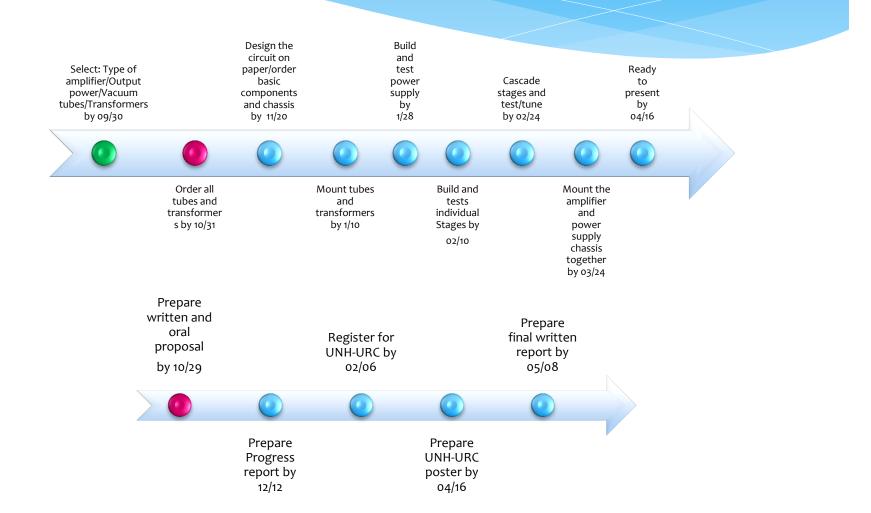
Driver Stage


- * Used to drive output stage
- * Provides voltage gain
- * One 6SN7 dual triode tube

Output Stage

- * Push Pull Configuration
- * Class AB1 Operation
- * Two 6L6 Beam Power Tetrodes
- * Output transformer
- * Negative Feedback

Block Diagram of the Power Supply


Power Supply

- Select a power transformer based on the tubes' voltage and current ratings
 - * Step up to 360V peak
 - Current rating of at least 128mA
- * Full-wave diode rectifier with ratings of at least 5A
- Smoothing Capacitor and RC smoothing network for ripple voltage elimination
- Voltage divider network to supply the needed voltage to differently rated tubes/components

- * Total Gain
- * Power output
- * Frequency Response

Timeline

Budget

Component	Cost	
Power Transformer	\$71.15	
Output Transformer	\$62.26	
6L6 Tubes (2)	\$36.95	
6SN7 Tubes (2)	\$65.90	
Tube Sockets (4)	\$27.80	
Chassis	\$30.00	
Basic Components (resistors, capacitors, etc)	Pending Design Work	
TOTAL	\$294.06 + Basic components	

Project Allocation

Matt Andrews	Yuriy Kharin		
Design on Paper			
Build/Test Power Supply			
Phase Splitter	Input Stage		
Output Stage	Driver Stage		
Chassis Mounting			
Presentation			