(A) General Design Criteria for Limestone Contactors Installed in Small Water Systems

A designer of limestone contactor should be aware of the various factors affecting limestone dissolution before designing a contactor to ensure its optimal performance. In summary, the factors that can affect the dissolution of limestone include the quality of water to be stabilized and the physical and chemical characteristics of limestone to be used.

Design Criteria	U.S.	Germany	Germany South Africa	
Location in the Treatment Train	Limestone contactors are typically placed after filtration, primary disinfection and chlorine contact. (Spencer, 2000). There was also a pilot study conducted in British Columbia (Benjamin et al.,1992) that used a limestone contactor before flocculation to condition the water. Note: Besides the typical locations noted here, there have been suggestions that limestone contactors could also be used as a pretreatment unit to adjust pH for removal of iron, manganese and aluminum.	Limestone contactors should be placed after disinfection (Stauder, 2002).	Limestone contactors should be placed after clarification, filtration and chlorination (Mackintosh, De Souza and De Villiers, 2003a).	
Water Quality Characteristics	The water to be treated with a limestone contactor must have low iron and turbidity content (Snoeyink et al., 1997). The USEPA (2003) prepared a flow diagram (Figure 1) to determine whether a limestone contactor would be a feasible option for a water system. The decision would be based on assessing the water quality parameters of the system. In summary, a water system should have a pH < 7.2, calcium < 60 mg/L and alkalinity < 100 mg/L. A special contactor design is required if the iron	 In order to determine whether a limestone contactor is feasible to treat a water system, the following water quality parameters must be known (DVGW, 1998): Acid consumption, K_{S,4.3} is the acid consumption, K_{S,4.3} is the acid consumption in meq/liter to achieve a pH of 4.3. This value multiplied by 61 approximately equals the concentration of hydrogen carbonate, HCO₃⁻ in ppm (Beforth, 2003). Base consumption, K_{B,8.2} is the amount of base consumed by water in meq/liter to 	The iron levels must be < 0.1 mg/L, aluminum levels < 0.15 mg/L and turbidity < 1 NTU (Mackintosh, De Souza and De Villiers, 2003a).	

	content is more than 0.2 mg/L and manganese content is more than 0.05 mg/L. This is due to possibility of the iron and manganese coating the contactor, and slows the calcium carbonate dissolution (USEPA, 2003). The Spraystab I design has been used in South Africa for treatment of water that contains more than 0.2 mg/L of iron and 0.05 mg/L or manganese and treated with a limestone contactor. The water can first be aerated, then stabilized with limestone contactor and finally filtered through a sand filter. The values in Figure 1 are similar to those given by Spencer (2000) except that alkalinity was given as < 50 mg/L and hardness < 50 mg/L. In addition to the above, the designer must know the temperature range, total inorganic carbon levels (DIC) and total dissolved solids or conductivity.	 achieve a pH of 8.2 (Beforth, 2003). This value multiplied by 44 approximately equals the concentration of carbon dioxide, CO₂ in ppm. Calcium concentration Saturation pH value, pHc after addition of calcite. According to Beforth (2003), since the reactivity of limestone is very low, one would find that K_{S,4.3} and K_{B,8.2} should be very low to achieve a pH in a range of 7.7 – 8.0. In addition, iron, manganese and aluminum levels must be less than the following concentrations to prevent formation of residue on the surface of the limestone media (DVGW, 1998): Iron < 0.2 mg/L Manganese < 0.05 mg/L If residues are formed, then iron, manganese, or aluminum removal may be required ahead of the limestone contactor (DVGW, 1998). 	
Empty Bed Contact Time (EBCT)	EBCT is in the range of 20 to 40 minutes if water is less than 5 °C, otherwise, EBCT in the range of 15 minutes to 1 hour have been used in successful contactor design. (Spencer, 2000).	EBCT is the most important design criteria in Germany. EBCT usually varies between 20 and 45 minutes ($0.33-0.75$ h), depending on the CO ₂ and HCO ₃ ⁻ contents in the raw water (Stauder, 2002).	EBCT more than 20 minutes unless determined to be otherwise on-site. (Mackintosh, De Souza and De Villiers, 2003a).
Loading Rate	2.4 m/hr or 1 gpm/ft ² (Spencer, 2000).	The typical loading rates are in the range of 4 - 8 m/hr or $1.7 - 3.3$ gpm/ft ² for common bed depth of 2 to 3 m. (Stauder, 2003).	Less than 10 m/hr or 4.1 gpm/ft ² (Mackintosh, De Souza and De Villiers, 2003a).

Flow Requirements	Limestone contactors must be designed to treat the maximum flow of the plant. (Spencer, 2000).	The flow to the limestone contactor must not exceed the maximum design capacity (DVGW, 1998). If dolomite is used as a media, the flow rate should not fall below the design flow rate by more than 30% (DVGW, 1998) to avoid the water from becoming oversaturated with respect to CaCO ₃ and precipitating in the contactor (Stauder, 2003).	Ensure equal flow into all limestone contactors, and the flow should be less than the maximum design capacity. (Mackintosh, De Souza and De Villiers, 2003a).
Limestone Bed Depth	Limestone bed depth can be determined by calculation using computer programs such as DESCON and Limestone Bed Contactor: Corrosion Control and Treatment Analysis Program Version 1.02. (Please refer to the design aids).	The limestone bed depth can be determined using the appropriate Figure 4 to 8 and the equations discussed in the design aids section. However, the typical limestone bed depth is in the range of 2 to 3 m (Stauder, 2003). If dolomite is used as a media, the total filter bed volume should be distributed across several filters to minimize pH fluctutations.	Minimum limestone bed depth of 2 m is recommended (Mackintosh, De Souza and De Villiers, 2003a).
Limestone Characteristics	Limestone used should be that described in ASTM Standard C51-02 as "sedimentary rock consisting of mainly carbonate and containing no more than 0 to 5% magnesium carbonate" (Spencer, 2000). This standard is available from http://www.astm.org. The weighted sum of aluminum and iron in stone must not exceed 10 mg/g of stone (Letterman, 1995). Testing of constituents of stone must adhere to the ASTM Standard 25-99 (Chemical Analysis of Limestone, Quicklime and Hydrated Lime) (Spencer, 2000). The USEPA (2003) has expressed concern that the limestone should not contain significant amounts of materials such as heavy metals that would be	There are several types of limestone media discussed by DVGW(1998) that can be used in a limestone contactor. These include dense calcium carbonate, porous calcium carbonate and dolomite. Dolomite is suitable to be used in a large contactor since it will provide a lower contact time (Stauder, 2002) although it also has some disadvantages (Please refer to the flow requirements section). The following shows the water quality characteristics that are applicable for each type of the limestone media (DVGW, 1998): a) Dense Calcium Carbonate i. Target pH=8 $K_{S,4.3} + 2K_{B,8.2} < 1.5 mol/m^3$ $[Ca] < 0.75 mol/m^3$ ii. Target pH=saturation pH $K_{S,4.3} + 2K_{B,8.2} < 1.0 mol/m^3$ $[Ca] < 0.75 mol/m^3$ b) Porous Calcium Carbonate $K_{S,4.3} + 2K_{B,8.2} < 1.5 mol/m^3$	Limestone used should consists of high calcium and low magnesium stone. Currently, limestone used to date in several installations in South Africa is the commercially available limestone pebbles from Bredasdorp, South Western Cape (De Souza et. al., 2000 and Mackintosh et. al., 2003a). It consists of 96% calcium, 1.7% silica, 1.3% magnesium and less than 0.1% iron and manganese by mass.

	imparted to the water as the limestone	$[Ca] < 0.75 \text{ mol/m}^3$	
	dissolves.	c) Half-Burnt Dolomite	
		$K_{S43} + 2K_{B82} < 2.5 \text{ mol/m}^3$	
		-,	
		Depending on the type of limestone used	
		(either calcium carbonate or half-burnt	
		dolomite), it must comply with the	
		requirements outlined in the following British	
		Standards:	
		• BS EN 1018:1998 (Chemicals used for	
		treatment of water intended for human	
		consumption – Calcium Carbonate).	
		• BS EN 1017:1998 (Chemicals used for	
		treatment of water intended for human	
		consumption – Half Burnt Dolomite).	
		These documents are available from	
		http://www.techstreet.com/info/bsi.html	
			T' 11 1'
Limestone Grain Sizes	Repeated runs using DESCON revealed	The following grain sizes are commercially	Limestone used has a grading
	that 11 to 14 mm stone (0.4 to 0.55 inch)	available for calcium carbonate and nail-burnt	$o_1 + 12mm - 15mm$ (De Souza et al. 2000) The size of
		dolollite.	limestone that produced
	2000).	• Dance Calcium Carbonate : 0.71, 1.25 mm	optimal results is 12 mm
		• Dense Calcium Carbonate : $0.71-1.25$ mm, 1.0.2.0 mm, 1.6.2.5 mm	(Spencer 2000)
		Deroug Coloium Carbonata : 1.0 - 2.0 mm	(Spencer, 2000).
		• Follows Calcium Carbonate $\cdot 1.0 - 5.0$ mm	
		• Hall-Bullit Dolollitte. $0.5-1.2$ IIIII, $0.5-2.5$	
		(Note: If undersized or oversize grains are	
		present they cannot be larger than 10% for	
		the individual group)	
		ine marriadur Broup.)	
		However, size range of 1.0-2.0 mm is	
		commonly used in Germany. Although, in	
		some of the older large water treatment plants	
		that are not able to properly backwash, larger	
		media sizes are used. Based on experience,	
		there is not a significant change in the	

		reactivity of the media for the size range between 0.7-3.0 mm (Stauder, 2003).	
Supporting Media	Supporting media used is based on the AWWA Standards for Filtering and Support Media (Spencer, 2002). The size of the support media used should be larger than the limestone size (Spencer, 2002).	Supporting media consists of 0.2 – 0.3 m in depth of inert materials (DVGW, 1998).	Supporting media consists of 150 mm deep, 25 mm diameter granite aggregrate (Mackintosh, De Souza and De Villiers, 2003a).
Design Aids	DESCON model was developed by Letterman and Kothari (1995) to aid in the design of limestone contactors. This computer program has been used by Spencer (2002) to design the limestone contactor facility in Mars Hill, Maine. This program is also recommended for the design of a limestone contactor by USEPA (2003). DESCON calculates the depth of limestone required in a contactor based on the influent water chemistry, limestone particle size, superficial velocity and the desired effluent water chemistry (Letterman, 1995). Figure 2 shows an output from DESCON using USEPA (2003) data from a typical Western Water System as input to the program. In this system, surface water contributes 80% of the amount of water supplied. The limestone diameter was entered as 12 mm and limestone CaCO ₃ content as 98%. DESCON calculated the equilibrium pH to be 8.82 and it required user input for the target pH.	A guideline for designing a limestone contactor is available (W 214/II: Entsaurung von Wasser Teil 2: Grundsatze fur Planung, Betrieb und Unterhaltung von Filteranlagen) from DVGW (1998). However, this guideline is based on empirical correlations. Therefore, Stauder (2003) suggests that for smaller plants, the limestone bed volume can be designed using the guideline and for larger plants, the limestone bed volume should be designed based on a pilot plant study. Stauder (2003) also suggests that it is very important (before designing) to obtain a reliable water analysis since any erroneous values can greatly affect the design. Computer software that can determine the calcium carbonate saturation of water is also very useful. Figure 4 to 8 are used to determine contact time using base and acid consumption of water at temperature of 10 °C for each of the following conditions. The contact time is then used to determine the minimum volume of media required in a contactor for several alternatives: (i) Dense calcium carbonate with grain size ranges between $1.0 - 2.0$ mm and a target pH value of either 8 or pHc.	CaCO ₃ saturation characteristics of water can be determined experimentally using the Marble Test. The Marble Test is an experiment based method to determine calcium carbonate saturation characteristics of water. Computer program such as STASOFT also used to determine the CaCO ₃ saturation and degree of stabilization of water using CaCO ₃ .

The target pH must be less than the	(ii) Porous calcium carbonate with grain size
equilibrium pH. Therefore, the target	pH ranges between $1.0 - 3.0$ mm and a target
was set at 8 5	pH value of either 8 or pHc
	(iii)Half-burnt dolomite with grain size ranges
Based on the DESCON output the de	expth between $0.5 - 2.5$ mm and a target pH
of the limestone contactor to reach a	value of pHc
target nH of 8.5 for this system was	
calculated as 3.1 ft	If the grain sizes used are not within the range
	specified in the figures, manufacturer's
Another program used to design a	recommendations should be used in designing
limestone contactor was developed by	a contactor
Schott (2002) called Limestone Bed	
Contactor: Corrosion Control and	Figure 9 is used for temperature correction
Treatment Process Analysis Program	Using Figure 4 to 8 the minimum volume of
Version 1.02 This program calculate	the limestone media required can be calculated
the depth of the limestone bed empty	as follows (DVGW 1998).
bed contact time and the limestone	
dissolved per volume of water treated	(i) Minimum volume of Limestone V_{M}
from the initial to equilibrium conditi	$V_{\rm M} = 0 \text{ x } t_{\rm f} \text{ x } 1/60$
Other additional parameters that are	where:
calculated using this program include	V_{M} = minimum volume of media. m ³ chosen
pH, total alkalinity, CO ₂ concentration	using the appropriate Figure 4 to 8 (For
DIC, calcium content and copper	dense CaCO ₃ , V_M may be lower than
content from the initial to equilibrium	calculated if the target pH is less than
condition. Figure 3 shows example of	8.0 or pHc (Stauder, 2003). Currently in
the software output.	Germany, the enforceable pH for
	corrosion control is around 7.4 to 7.6.
	Therefore, the V_M used can be about
	half of the calculated.)
	$Q = flow rate, m^3/hr$
	t_{f} = hypothetical contact time, min
	f = temperature correction factor
	(refer to Figure 9)
	Additional media, V_B , is then added to the V_M
	to account for media consumption during the
	period between two media fillings and
	backwashing (Stauder, 2003). Since V_M is the
	minimum amount of media required in a
	contactor to achieve the desired pH, therefore

$V_{\rm B}$ must be added so that the volume of the
media after consumption will never be less
than V _M
then v _M .
According to Standar (2002), it requires
According to Statute (2005), it requires
experience to determine $V_{\rm B}$. It may depend on
several factors besides media consumed due to
the acidity of water or backwashing, such as
the capacity of the truck used to transport the
media, the size of the silo and the distance
between the water treatment facility and the
limestone supplier facility. However, $V_{\rm B}$ can
be estimated based on the following (Stauder
2003).
2005).
Estimation of U.
Estimation Of VB.
The amount of media consumed can be
calculated based on the acidity of the water or
the amount of CO_2 present in the water (can be
calculated from $K_{B8,2}$). For example, for every
mol of CO_2 reacting with CaCO ₃ in water, 100
g of $CaCO_3$ is consumed according to the
following reaction:
$CO_2 + CaCO_3 + H_2O = Ca^{2+} + 2HCO_3^{-}$
If dolomite is used for every mol of CO_2
reacting with dolomite in water 47 g of
dolomite is consumed as determined
ampirically Using the densities of CoCO and
dolomite the volume of modio consumed con
dolomite, the volume of media consumed can
be calculated. In addition, 10% can be added
to account for media losses during
backwashing.
The sum of V_B and V_M is the volume of the
limestone bed, V _F calculated as follows
(DVGW, 1998):
(ii) Filter Bed Volume, $V_{\rm E}$:
$V_{\rm F} = V_{\rm M} + V_{\rm P}$
where:
where.

		V_F = filter bed volume, m ³ V_B = consumption volume, m ³ Click on this link to view an example on how to use Figure 4 to 10.	
Influent Distribution Systems		For small contactor facilities, there is no requirement on the influent distribution system as long as the contactors can be filled with water (Stauder, 2003). Special distribution system is only needed for large contactors.	Use a false bottom feed systems instead of manifold/slotted pipe or other type systems (Mackintosh, De Souza and De Villiers, 2003a).
Piping Requirements	A bypass around the contactor and a drain within the contactor must be available to allow annual maintenance of a contactor (Spencer, 2000).	Limestone contactors need to be equipped with devices for drainage of initial filtrate (DVGW, 1998).	Piping to and from the units should be such that each individual contactor is able to operate independently, be filled independently, be flushed to waste in both upflow and downflow mode and handle excessive flow loading via an overflow pipe to waste (Mackintosh, De Souza and De Villiers, 2003a).
Installation Requirements		The number of contactors that need to be installed depends on the site specification and plant throughput (Stauder, 2003).	At least two contactors should be installed for each water system to allow uninterrupted operation while one of the contactors is under maintenance (Mackintosh, De Souza and De Villiers, 2003a).
Contactor Configuration	Both cylindrical and box-shaped contactors have been designed in the U.S.	Most of the older water systems are rectangular open tanks and most of the newer water systems are cylindrical pressure tanks (Stauder, 2003). However, the configuration depends on the amount of water to treat and the benefit of keeping the pressure (Stauder, 2003).	Cylindrical configuration, with ratio of height to diameter of at least 1:1. The structure should be completely enclosed, with access hatch on top for limestone addition. (Mackintosh, De Souza and De Villiers, 2003a).

		Rectangular configuration is also possible. However, the hydraulics of the system must be taken into consideration. The ratio of height to wall length must be at least 1:1 and the corners of the contactor must be benched/curved. The curved benching must be at least one quarter of the wall length.
Construction Material	Concrete is usually used for open contactors and stainless steel is typically used for closed contactors (Stauder, 2003).	Cement-concrete or fiberglass (Mackintosh, De Souza and De Villiers, 2003a).
Contactor Wall Protection	For open contactors, the wall can be protected from corrosion using ceramic tiles while in the closed contactors, the wall can be protected with epoxy coating (Stauder, 2003).	The internal contactor wall should be coated (for example with epoxy coating) to protect it from aggressive or abrasive reaction. (Mackintosh, De Souza and De Villiers, 2003a).

Backwash Requirements	Depending on the contactors shoul a week (DVGW increases above backwashing ne frequently. The following sh practice in Germ Backwash Step <u>1 Air</u> <u>2 Air/Water</u> <u>3 Water</u> ^a The common of (Stauder, 2003). According to D ^A from the backwas (such as iron flo aluminum flocs may be basic. The contactors using and if backwash time on a new m The backwash w disposal.	the type of me d be backwa , 1998). If th the allowed eds to be dor nows a succe any (DVGW Duration (minutes) 3-5 5-10 None Specified ^a uration is 10 VGW (1998) ash process c cs, manganes and undersiz half-calcine ing is carriec hedia or after vater does rec	dia, the shed at e head l value, ne more ssful ba <u>7, 1998</u> Backv (n Air 60 60 None - 15 m , the dir ontains se flocs, sed med lly true dolomi l out for long id quire pro	limestone least once loss ackwash): wash Rate n/hr) Water None 10-12 12-25 inutes ty water solids ia) that for tic lime the first le periods. oper	The limestone contactors must be able to down-flush fines to waste at least once a month until the site-specific frequency is determined (Mackintosh, De Souza and De Villers, 2003a).
Water Quality Monitoring	Limestone conta	ictors must b	e equip	ped with	Provide sample taps for water
Requirements	water quality mo stabilization (DV important param effluent from the contactor using media. Limestone conta indicator showin	onitoring taps /GW, 1998) leter to meas e contactor e dolomitic lin actors should ing the level f	s before The mure is pl speciall nestone have vior medi	e and after ost H of the y for a as a isible a refilling	 quality monitoring before and after stabilization. (Mackintosh, De Souza and De Villiers, 2003a). Provide two piezometers on each contactor to measure pressure loss across the limestone bed (Mackintosh, De

	(DVGW, 1998). The media refill level is determined from the filter bed volume and minimum volume.Limestone contactors must be equipped with devices for measuring head loss (DVGW, 1998).	Souza and De Villiers, 2003a). Pressure loss measurement is necessary to indicate that the limestone fines in the contactor need to be "down flushed".
Media Refilling Facility	The media can be refilled into the contactor either manually or hydraulically, but hydraulically is preferred (DVGW, 1998).	The media can be refilled in a contactor manually or using a loading gantry facility (Mackintosh, De Souza and De Villiers, 2003). Usually, media refills are done manually if the limestone comes in lighter packages (i.e. 25 kg bags), but typically in the recent large units, a loading gantry facility is used since the limestone comes in heavier packages (1 ton bags).

FIGURES

Figure 1. Limestone Contactor Decision Tree (Spencer, 2003)

C:\unzipped\DESCON~1\Descon.exe	
INPUT PARAMETERS Influent pH Influent Calcium, mgCa/L Influent Alkalinity, meq/L Influent Alkalinity, meq/L	6.80 10.00 0.34
Influent Temperature, Celsius Superficial Velocity, gpm/sq.ft. Limestone Particle Diameter, cm Limestone CaCO3 Content, mass% Target pH	20.00 1.00 1.20 98.00 8.50
OUTPUT Equilibrium pH Calcium Concentration at Equilibrium, mgCa/L Calcium Concentration at Target pH, mgCa/L Calculated Influent DIC, mgC/L pH when effluent water is equilibrated with atmospheric CO2 DEPTH OF CONTACTOR TO REACH THE TARGET pH, feet	8.82 15.63 14.74 5.32 7.93 3.1
Press "enter" to continue TEMPERATURE AND ACTIVITY CORRECTED CONSTANTS Ion product of water, pKw Solubility product of calcium carbonate, pKs First ionization constant for carbonic acid, pK1 Second ionization constant for carbonic acid, pK2 Henry's Law constant, pKh (Kh, mols/Latm)	13.95 7.89 6.17 9.94 1.40
•	2 /

Figure 2. DESCON Output Using the Typical Western Water System Data as Input

Figure 3. Limestone Bed Contactor Corrosion Control and Treatment Analysis Program Version 1.02 (Schott, 2003)

Microsoft Excel - schotts_limestone_program_v1.02	_ @ ×
Eile Edit View Insert Format Iools Data Window Help	×
□ ☞ 🖬 番 🕃 ジ 🐇 階 🛍 ダ い・ロ・ 🍓 Σ 🏂 釣 🖓 18% 🕞 🕄 -	
041 =	
Copyright @ 2002 - 2003 Schott Software, all rights reserved. (707/576-2732), gschott@dhs.ca.gov	

Limestone Bed Contactor

Corrosion Control and Treatment Process Analysis Program - Version 1.02

Step 1: Initial Water	r Charact	teristics				
Enter initial water characteris	tics based	on laboratory analysis.				
System Name: Source Point: Date of Sample:	Santa Rosa Lake August 11, 19	999				
TDS =	40	mg/L 1.00 mMols/L, Ionic Strength				
Total Calcium =	5	mg/L Ca ³ 12.49 mg/L as CaCD ₃				
Total Alkalinity =	30.0	mg/L as CaCD,				
pH=	6.90	field pH is recommended				
Water Temperature =	15.0	*C (temp. at which pH was analyzed)				
Field Water Temperature =	15.0	"C (operating temperature at facility)				
CaCD, Solubility Product, pKsp =	-8.453	at 20°C, program default				
Do you want to change the Solubility Pro	duct of CaCO ₃	? O Yes 🛞 No				
User CaCO, Solubility Product, pKsp =	-8.721	Mo data anter is manifed				
Relative Temperature for pKsp =	20.0	°C				
Enter Pre - Treatment Dosage for Lowerin	ng pHL					
Carbon Dioxide (CO ₂) -/-	0.0	mg/L 0.00 mg/L as CaCD,				

Step 2: Initial R	esults	(Before Lime	stone Ad	dition)		
Theoretical initial wat	er chara	acteristics after te	emperature	e correction.		
pH=	6.90		62.5	uS/cm (Electrical Conductivity)		
Total Alkalinity =	0.60	meqfL				
Acidity =	49.1	mgiL as CaCO ₅				
Carbon Dioxide (CO ₂) =	8.41	mgiL as COand	0.635	mgiL, Atmospheric equilibrium CO _{ttest}		
DIC =	79.1	mgiL as CaCO ₅	9.49	mg/L as C, dissolved inorganic carbon		
Langelier Index, Calcite =	-2.30	Tendency to dissolve CaCO3 (for steel and cast iron piping)				
CCPP =	-20.1	mgiL as CaCO ₃ , Calcium Carbonate Precipitation Potential				
Bass + Bors =	0.334	mM/pH, Buffer intensity from water and carbonate species				
CaCO _h pKsp =	-8.430	15.0 °C, temperature				
Copper II =	2.86	mg/L; Cupric Hydroxic	le, light blue/blu	Je-green		
I.S. EPA Guidance recomme	nd that the	initial water characteristi	ic meet the folk	owina		
parameters when considering	limestone	contactor:				
pH <= 7.2	pH <= 7.2 Condition met					
DIC < 10 mg/L as C		Condition met				
Calcium c 20 mg/L Ca		Condition met				

Step 3: Limestone E	Bed Con	tactor Parameters	
Enter parameters for contacto	r and che	mical addition.	
Superficial Velocity =	5.0	gpm/lit ² 20.37 cm/min	
Limestone Particle Diameter =	1.0	cm, (0.3 to 3.2 cm)	
Limestone Porosity, & =	0.42		
Sphericity (roundness), 7 =	0.80	range: 0.4 - 0.8	
CaCO ₂ (Limestone) =	15.7	mg/L	
You may enter "Target pH" to determine L	imestone con	oentration and depth of contactor.	
Target pH =	7.80	Target pH	

Step 4: Results	(After	Chemical Addition of Limestone)			
pH=	7.80	pH of water after chemical addition			
Total Alkalinity =	45.7	mgiL as CaCO ₃ 0.91 meq/L			
Total Calcium =	11.29	mgiL Ca ^b 28.2 mgiL as CaCO ₈			
Carbon Dioxide (CO ₂) =	1.62	mgiL as CO _{Rted} 0.44 mgiL as C			
DIC =	94.8	mgiL as CaCO ₂ 11.38 mgiL C, dissolved inorganic carbon			
Langelier Index, Calcite =	-0.87	Tendency to dissolve CaCOO (for steel and cast iron piping)			
CCPP =	-4.4	mg/L as CaCO ₂ , Calcium Carbonate Precipitation Potential			
Bats + Bcas =	0.036	mMipH, Buffer intensity from water and carbonate species			
Copper II =	0.29	mgiL: Cupric Hydroxide, light blue/blue-green			
Depth of Contactor =	3.96	feet 47.5 inches 121 cm			
Empty Bed Contact Time =	5.9	minutes			
Limestone Dissolved =	130.9	pounds per million gallons of water treated 53.4 Kg/MG			

Program Overview

Press "Calculated Data" to calculate all limestone bed contactor data from initial characteristics to solubility:

•

ыĒ

Microsoft Excel	- schotts_lin	nestone_prog	ram_v1.	02										
Ele Edit View	Insert Form	at <u>T</u> ools <u>D</u> ata	a <u>W</u> indo	w <u>H</u> elp										- 6
	30.7	× m m <	1 5	· cu - @	$\Sigma f_{\mu} \neq Z_{\mu}$	1 48 78%	- ? .							
Q100 -	=			100										
Calculate Data	a (Calculate	ed Da	ta from	Initial to E	quilibriur	n for L	imes	tone B	led Co	ontact	or		
CaCO, Dose	pН	Total Alk	C0;	DIC, as C	Calcium, as Ca	Bage + Bces	CCPP	u	Copper II	De	pth of Contac	tor	EBCT	Dissolved
mg/L	unit	mg/L	mgiL	mgiL	mgiL	mM/pH	mg/L		mgiL	ft	inches	cm	minutes	lbs/MG
0	6.90	30.0	8.4	79.1	5.0	0.334	-20.14	-2.30	2.86	0	0.0	0	0.00	0.0
1	6.94	31.0	8.0	80.1	5.4	0.324	-19.14	-2.21	2.55	0.13	1.6	4	0.20	8.3
2	6.98	32.0	7.5	81.1	5.8	0.312	-18.14	-2.13	2.28	0.27	3.3	8	0.41	16.7
3	7.02	33.0	7.1	82.1	6.2	0.299	-17.14	-2.05	2.04	0.42	5.1	13	0.63	25.0
	7.06	34.0	6.7	83.1	5.5	0.236	-16.14	-1.97	1.82	0.58	7.0	18	1.52	33.3
6	7.10	35.0	5.0	25.1	74	0.272	-10.14	-1.03	144	0.75	11.1	20	1 19	50.0
7	7 19	37.0	53	86.1	78	0.241	-13.14	-173	1.27	1.12	134	34	167	58.4
8	7.24	38.0	4.9	87.1	82	0.225	-12.14	-1.65	1.12	1.33	15.9	40	1.98	66.7
9	7.23	39.0	4.5	88.1	8.6	0.209	-11.14	-1.56	0.99	1.55	18.6	47	2.32	75.0
10	7.34	40.0	4.0	89.1	9.0	0.191	-10.14	-1.48	0.86	1.80	21.6	55	2.69	83.4
11	7.40	41.0	3.6	90.1	9.4	0.173	-9.14	-1.39	0.74	2.07	24.8	63	3.10	91.7
12	7.47	42.0	3.2	91.1	9.8	0.155	-8.14	-1.29	0.63	2.37	28.5	72	3.55	100.0
13	7.54	43.0	2.7	92.1	10.2	0.137	-7.14	-1.19	0.53	2.72	32.6	83	4.06	108.4
14	7.62	44.0	23	93.1	10.6	0.118	-6.14	-1.09	0.44	3.11	37.3	95	4.65	116.7
15	7.72	45.0	19	94.1	110	0.099	.5 14	.0.96	0.35	358	42.9	109	5.35	125.1
16	7.93	46.0	15	95.1	114	0.091	.4 14	.0.83	0.27	4 14	497	126	6.20	1334
17	797	47.0	1.1	96.1	11.0	0.064	.2 14	0.00	0.20	4.07	50.4	140	7.20	1417
18	8 14	48.0	0.8	97.1	12.2	0.051	.2 14	-0.66	0.20	5.87	70.4	179	8.78	150.1
19	8.34	49.0	0.5	98.1	12.6	0.045	-1.14	-0.25	0.09	7.52	90.2	229	11.25	158.4
20	0.01	50.0	0.0	00.1	12.0	0.010	0.14	0.00	0.00	12.00	IEEO	200	10.40	100.7
20	0.00	50.0	0.5	33.1	13.0	0.040	-0.14	-0.03	0.06	12.33	100.3	330	13.43	100.7
And and and and and and	88 - 6 83 6	(1 -	A				lest-						
H\Limest	one Contact	or / Reference	s (De	finitions & Set	tings /			•						

Figure 4. Contact Time as a function of Base Consumption (K_{B,8.2}) and Acid Consumption (K_{S,4.3}) for Dense Calcium Carbonate (Grain Size 1.0-2.0 mm). Temperature: 10°C, Processing Goal pH=8.0. (DVGW, 1998)

Figure 5. Contact Time as a function of Base Consumption (K_{B,8.2}) and Acid Consumption (K_{S,4.3}) for Dense Calcium Carbonate (Grain Size 1.0-2.0 mm). Temperature: 10°C, Processing Goal pH=pHc. (DVGW, 1998)

Figure 6. Contact Time as a function of Base Consumption (K_{B,8.2}) and Acid Consumption (K_{S,4.3}) for Porous Calcium Carbonate (Grain Size 1.0-3.0 mm). Temperature: 10°C, Processing Goal pH=8.0. (DVGW, 1998)

Figure 7. Contact Time as a function of Base Consumption (K_{B,8.2}) and Acid Consumption (K_{S,4.3}) for Porous Calcium Carbonate (Grain Size 1.0-3.0 mm). Temperature: 10°C, Processing Goal pH=pHc. (DVGW, 1998)

Figure 8. Contact Time as a function of Base Capacity (K_{B,8.2}) and Acid Capacity (K_{S,4.3}) for Half-Calcine Dolomitic Lime (Grain Size 0.5-2.5 mm). Temperature: 10°C, Processing Goal pH=pHc. (DVGW, 1998)

SAMPLE PROBLEM

Sample on how to use Figure 1 to 6 in W214/11 (DVGW, 1998):

This example shows how to design a limestone contactor by using figure 1 to 6 in W214/11 (DVGW, 1998). Limestone contactor will be used to treat the following raw water:

Raw Water* Treated by Mars Hill, Maine Water Treatment Plant (Spencer, 2000):

Surface Water Source: Young's Lake Lowest pH of influent to the limestone contactor = 7.18 Alkalinity in the raw water = 45 - 83 mg/L as CaCO₃ Calcium in the raw water = 19 - 34 mg Ca/L**Note: These water quality parameters were obtained in 1996, before the limestone contactor was installed in the plant.*

Determination of K_{S,4,3} and K_{B,8,2}:

Use the worst case condition, pH = 7.18 and alkalinity of 45 mg/L as CaCO₃ Most of the alkalinity source at pH = 7.18 is from HCO₃⁻: $K_{8,4.3} = [HCO_3^-] = \frac{45 \text{ mg x}}{L} \frac{1 \text{ meq x}}{50 \text{ mg}} \frac{1 \text{ mmol HCO}_3^-}{1 \text{ meq HCO}_3^-} \frac{1 \text{ mol x}}{10^3 \text{ mmol x}} \frac{10^3 \text{ L}}{1 \text{ m}^3} = 0.9 \frac{\text{mol}}{\text{m}^3}$

Assume the lowest temperature, T = 5 °C, Therefore pKa₁ = 6.52 at T = 5 °C (Snoeyink and Jenkins, 1980). Assume $CO_2 = H_2CO_3^*$ and ignoring activity coefficients:

$$K_{B,8.2} = [CO_2] = [H_2CO_3^*]$$

$$[HCO_3^-][H^+] = 10^{-pKa1}$$

$$[H_2CO_3^*]$$

$$K_{B,8.2} = [CO_2] = [H_2CO_3^*] = (0.9 \times 10^{-3})(10^{-7.18}) \text{ mol } x \quad 10^3 \text{ L} = 0.2 \text{ mol } m^3$$

Determination of Media Type:

 $\begin{array}{l} K_{S,4.3} + 2K_{B,8.2} = 0.9 + 2(0.2) = 1.3 \ mol/m^3 \\ \mbox{[Ca]} = 19 \ \underline{mg} \ x \ \underline{mmol} \ x \ \underline{mol} \ x \ \underline{mol} \ x \ \underline{10^3 \ L} \ = 0.47 \ mol/m^3 \\ \hline 10^3 \ mmol \ x^3 \end{array}$

Based on the total amount of $K_{S,4.3} + 2K_{B,8.2}$, the calcium content and the requirement listed in Part 3.2 of W 214/11 (1998), the following media can be used:

- Dense Calcium Carbonate, Target Goal pH=8. Figure 1 of W214/11 is applicable.
- Porous Calcium Carbonate, Target Goal pH=8 or pH=pHc. Figure 3 of W214/11 is applicable.
- Dolomite, Target Goal pH=pHc. Figure 5 of W214/11 is applicable.

Applicability of Design Figures:

Figure 1, 3 and 5 of W214/11 (or Figure 4,6 and 8 in this module) can be used to determine the contact time based on $K_{S,4.3}$ and $K_{B,8.2}$. Figure 6 of W214/11 (or Figure 9 in this module) is used for temperature correction.

Design Method:

Maximum flow rate, $Q = 1600 \text{ m}^3/\text{day}$ (430,000 gallons/day) (Spencer, 2000) Loading Rate = 2.4 m/hr (1 gpm/ft²) (Spencer, 2000) Assume lowest temperature, T = 5 °C.

(i) If using Dense Calcium Carbonate and the desired target pH=8:

Assume size of media = 1.0 - 2.0 mm Target pH = 8

From Figure 1, $t_F = 25$ min and from Figure 6, f = 1.5.

Minimum bed volume, V_M = t_F x f x Q x 1/60 min = 25 min x 1.5 x 1600 m³/day x 1 day/24hr x 1 hr/60 min = 42 m³

Depth of limestone bed = $t_F x f x$ Loading Rate = 25 min x 1.5 x 2.4 m/hr x 1 hr/60 min = **1.5 m (5 ft)**

Surface area of the contactor = $1600 \text{ m}^3/\text{day} \ge 2.4 \text{ m/hr} \ge 1 \text{ day}/24 \text{ hr} = 28 \text{ m}^2$

Figure 1. Contact Time as a function of Base Consumption (K_{B,8.2}) and Acid Consumption (K_{S,4.3}) for Dense Calcium Carbonate (Grain Size 1.0-2.0 mm). Temperature: 10°C, Processing Goal pH=8.0. (DVGW, 1998)

Figure 6. Correction Factor as a Function of Water Temperature. (DVGW, 1998)

Determination Whether V_B is Needed in the Design

If the dissolution rate of the limestone is very slow, then a consumption volume, V_B is not needed (Stauder, 2003). The need to include V_B in the design of a limestone contactor is up to the designer. The choice depends much on the frequency of media refilling. Additional factors include the capacity of the limestone supplier truck and the capacity of the silo used to store the limestone (Stauder, 2003). If the capacity of the truck and the silo is small, it may limit the amount of limestone that can be refilled each time, therefore, the refill frequency must be chosen by taking these factors into account. The amount of CaCO₃ dissolved for several options of media refills frequency is shown in this example.

A run using MINTEQ reveals that at saturation, this water dissolves 0.008 g/L of Ca^{2+} (0.1988 mol/m³). The following calculations show the amount of CaCO₃ dissolved daily, weekly, monthly and yearly based on the result obtained using MINTEQ.

The daily consumption of CaCO₃ = $1600 \text{ m}^3/\text{day x } 0.1988 \text{ mol/m}^3 \text{ x } 100 \text{ g/mol x } 10^{-3} \text{ kg/g}$ = 32 kg/day

Weekly consumption of $CaCO_3 = 31.8 \text{ kg/day x 7 days/week} = 223 \text{ kg/week}$

Monthly consumption of $CaCO_3 = 31.8 \text{ kg/day x } 30 \text{ days/month} = 954 \text{ kg/month}$

Yearly consumption of $CaCO_3 = 31.8 \text{ kg/day x } 365 \text{ days/yr} = 11,607 \text{ kg/year}$

Using the density of dense $CaCO_3$ of 1500 kg/m³ (Table 1 in W214, DVGW 1998), the weight of $CaCO_3$ can be calculated. Based on Figure 1 and 6, the minimum volume, V_M of limestone needed to stabilize this water is 42 m³. This corresponds to 63,000 kg of $CaCO_3$. The following table shows the percent of $CaCO_3$ dissolved daily, weekly, monthly and yearly.

No.	Frequency of Media Refilling	Amount of CaCO ₃	Percent of CaCO ₃
		Dissolved	Dissolved (%)
1	Daily	32 kg/day	0.05
2	Weekly	223 kg/week	0.35
3	Monthly	954 kg/month	1.51
4	Yearly	11,607 kg/year	18.42

The above table shows that if the designer decides to refill the limestone either daily or weekly, the percent of $CaCO_3$ dissolved between media refilling is very small (less than 1%). Since the amount dissolved is very small, the designer may exclude V_B in the design if he/she decides to have the limestone refilled daily or weekly. Thus, the total contactor bed volume should only include the minimum volume of limestone required, V_M . However, if a designer decides to have the limestone refilled monthly or yearly, then V_B must be included in the design since a significant amount of limestone will be dissolved between media refilling.

The amount of V_B can be calculated based on the amount of CaCO₃ dissolved as calculated above (954 kg for monthly refill and 11,607 kg for yearly refills) with the addition of 10% to account for losses of media due to backwashing. The following shows an example to calculate V_B , the total contactor bed volume, V_F and the total height of contactor for monthly media refills.

 $V_{\rm B} = 954 \text{ kg} / 1500 \text{ kg/m}^3 + 0.10 (42 \text{ m}^3 + 954 / 1500 \text{ kg/m}^3) = 5 \text{ m}^3$

 $V_F = 42 \text{ m}^3 + 5 \text{ m}^3 = 47 \text{ m}^3$

Total Height of Contactor = $47 \text{ m}^3 / 28 \text{ m}^2 = 1.7 \text{ m} (5.6 \text{ ft})$

(ii) If using Porous Calcium Carbonate and the desired target pH = 8:

```
Assume size of media = 1.0 - 3.0 mm
Target pH = 8
```

From Figure 3, $t_F = 11.5$ min and from Figure 6, f = 1.5.

```
Minimum bed volume, V_M = t_F x f x Q x 1/60 min
= 11.5 min x 1.5 x 1600 m<sup>3</sup>/day x 1 day/24hr x 1 hr/60 min
= 19.2 m<sup>3</sup>
```

Depth of limestone bed = $t_F x f x$ Loading Rate = 11.5 min x 1.5 x 2.4 m/hr x 1 hr/60 min = 0.7 m (2.2 ft)

Surface area of the contactor = $1600 \text{ m}^3/\text{day} \ge 2.4 \text{ m/hr} \ge 1 \text{ day}/24 \text{ hr} = 28 \text{ m}^2$

(iii) If using Dolomite and the desired target pH = pHc

```
Assume size of media = 0.5 - 2.5 mm
Target pH = saturation pH = pHc
```

```
From Figure 5, t_F = 7.8 min and from Figure 6, f = 1.5.
```

```
Minimum bed volume, V_M = t_F x f x Q x 1/60 min
= 6.8 min x 1.5 x 1600 m<sup>3</sup>/day x 1 day/24hr x 1 hr/60 min
= 11 m<sup>3</sup>
```

```
Depth of limestone bed = t_F x f x Loading Rate
= 6.8 min x 1.5 x 2.4 m/hr x 1 hr/60 min
= 0.4 m (1.5 ft)
```

Surface area of the contactor = $1600 \text{ m}^3/\text{day} \times 2.4 \text{ m/hr} \times 1 \text{ day}/24 \text{ hr} = 28 \text{ m}^2$

Figure 5. Contact Time as a function of Base Consumption (K_{B,8.2}) and Acid Consumption (K_{S,4.3}) for Porous Calcium Carbonate (Grain Size 1.0-3.0 mm). Temperature: 10°C, Processing Goal pH=pHc. (DVGW, 1998)

(B) Design Criteria Specifically for Small Groundwater Systems with Iron and Manganese Present

Table 1 shows the treatment objectives and Table 2 shows the installation and operation requirements applicable for the Spraystab I unit used to stabilize water in small-scale groundwater systems containing iron and manganese in South Africa.

No.	Treatment Objectives				
1.	The unit should achieve an appreciable level of pH adjustment and stabilization.				
2.	The unit should be able to remove iron such that the iron level in the treated water is no				
	more than 1 mg/L and preferably less than 0.3 mg/L.				
3.	The unit should be able to remove manganese such that the manganese level in the				
	treated water is no more than 1 mg/L and preferably less than 0.1 mg/L.				
4.	The unit should be able to filter the water.				
5.	The unit should be able to treat between 25 and 50 m^3 /day.				

Table 1. Treatment Objectives of Spraystab I Unit (Mackintosh, Engel and De Villiers 1997)

Table 2. Installation and Operation Requirements of Spraystab I Unit (Mackintosh, Engel and De Villiers, 1997)

No.	Installation and Operation Requirements
1.	All components of the unit are easily handled by two people and easily transported.
2.	The materials and equipment needed should result in a low cost and easy construction and
	repair.
3.	The unit requires minimum operator attention and skills.
4.	The unit utilizes minimum chemical dosing. If dosing is required, it should be self-
	regulating.
5.	The unit should not require dosing pumps.
6.	The unit should not require water pumps other than the well pump.
7.	The unit must be robust and reliable.
8.	The unit is independent of electrical control or operating systems.

Table 3 shows the design criteria of the Spraystab I unit.

Table 3. General Design Criteria of Sp	ravstab I System (Mackintosh,	De Souza and De V	(illiers, 2003b)
	• • • •		, , ,

No.	Components	Functions
1.	Access Lid	An access lid must be provided on a closed contactor to allow
		access for maintenance or cleaning work, prevent contamination
		from outside materials such as leaves and twigs, prevent the beds
		from algal/bacterial growth and minimize dissolution of carbon
		dioxide into the water.
2.	Spray Nozzles	The 60° full cone spray nozzles are located at the center of the
		aeration ducts. The well pumps feeds directly to the spray nozzles.
		The nozzle height above the aeration duct is designed such that the
		air flowing into the aeration duct is at the maximum.
3.	Aeration Ducts	The aeration ducts are located on the access lid and covered with
		coarse stainless steel wire mesh screens.
4.	Vent Ducts	The vent ducts are covered with coarse stainless steel wire mesh
		screens.
5.	Limestone Media	The limestone contact unit consists of a bed of approximately 800
		mm in depth of limestone with a grading of -15 mm + 12mm. The
		bed rests on top of the support grid.
6.	Support Grid	The support grid is located at the lower end of the limestone
		contactor unit of a Spraystab I unit. There is a 10 mm wire mesh
		screen placed on the support grid.
7.	Slotted Pipe	Each compartment in the filtration unit of a Spraystab I unit is
	Underdrain	equipped with a slotted pipe underdrain. The slotted pipe feeds into
		a common manifold fitted with a raised outlet used to control the
		water level in the filtration unit.
8.	Filtration Media	There are two media used in the filtration unit. The lower layer of
		the filtration unit consists of 0.3 to 0.5 mm graded filter sand to a
		depth of 300 mm above the underdrain. The upper layer of the
		filtration unit consists of 1.0 to 1.5 mm graded hydro-anthracite
		media.

(C) General Design Criteria Specifically for Small Groundwater Systems without Iron and Manganese Present

Table 4 shows the design criteria of the Spraystab II system used to stabilize water in small-scale groundwater systems without iron and manganese present.

No.	Components	Functions
1.	Access Lid	An access lid must be provided on a closed contactor to allow access for maintenance or cleaning work, prevent
		contamination from outside materials such as leaves and twigs, prevent the beds from algal/bacterial growth and
		minimize dissolution of carbon dioxide into the water.
2.	Spray Nozzles	The type of material used for spray nozzles is important. The full cone HH stainless steel spray nozzles are more effective
		in aerating water and durable compared to PVC/plastic spray nozzles. In addition, PVC/plastic spray nozzles are also
		more prone to clogging resulting in poor performance in aeration.
3.	Aeration Ducts	Each limestone contactor unit is required to have two aeration ducts (i.e. air inlets). Each duct have a diameter of 250
		mm. The ducts must be covered with a stainless steel mesh to avoid leaves, twigs and other outside materials from
		building up on the surface of the limestone beds.
4.	Vent Ducts	Each limestone contactor unit is required to have two vent ducts, one on the access lid and the other on the roof of the
		tank. Each vent duct should have a diameter of 300 mm. Similar to the aeration ducts, the vent ducts mush also be
		covered with a stainless steel mesh.
5.	"Settling Tubes"	The "settling tubes" must be connected to the aeration ducts to allow the water from the aeration ducts to flow to the
		slotted pipe. The top of the "settling tubes" must be above the treated water level to vent the air between the aeration duct
		and the "setting tubes".
6.	Slotted Pipe	Slotted pipe manifold system results in uniform distribution of water in a small limestone contactor unit.
7.	Granite Layer	A 150 mm deep later of 25 mm diameter granite aggregate is required between the limestone bed and the manifold
		system. The granite used must be appropriate for water treatment.
8.	Drain/Flush Valves	At least two drain/flush valves are required for each limestone contactor unit, but four valves are preferred.
9.	Treated Water	The limestone contactor must be designed such that the treated water level is always less than the height of the "settling
		tubes" and is 200 mm above the limestone bed. A fully enclosed pipeline must be used to collect and transport the treated
		water to the storage tank to prevent contamination.
10.	Treated Water	The pipe must be positioned such that the treated water level is 200 mm above the limestone bed.
	Outlet Pipe	
11.	Loading Rate	Loading rate must be less than 10 m/hr. Higher loading rates will result in increased water turbidity.

Table 4. General Design Criteria of Spraystab II System (Mackintosh, De Souza and De Villers, 2003b)