Reducing Disinfection By-Products in Small Drinking Water Systems

by M. Robin Collins, James P. Malley, Jr, & Ethan Brooke Water Treatment Technology Assistance Center Department of Civil Engineering University of New Hampshire

EPA TECHNICAL ASSISTANCE CENTER NETWORK (TACnet)

Assisting Small Public Water Systems...Protecting Public Health

Disinfection Byproducts Formation

NOM + Disinfectant = DBPs

- NOM=Natural Organic Matter=Organic Precursor
- Disinfectants=Chlorine, Chloramination, UV, Ozone, Chlorine Dioxide
- DBPs=Disinfection By-Products
 Trihalomethanes (THMs), 80 ug/L
 Haloacetic Acids (HAAs), 60 ug/L

DBP Control

NOM + Disinfectant = DBPs

- NOM Removal/Reduction
- Alternative Disinfectants
- DBP Removal

Viable Water Treatment Options for Small Systems

- Packaged Coagulation Treatment Systems
- Pressure Filtration Systems
 - Granular Media
 - Ceramic Media
 - Diatomaceous Earth/Precoat
 - Membranes
- Biological Filtration Systems
 - Riverbank Filtration
 - Slow Sand Filtration

MAJOR COMPONENTS OF A DRINKING WATER TREATMENT SYSTEM

NOM Precursor Reduction Techniques

- Enhanced Coagulation/Clarification
- Activated Carbon/Media Adsorption
- Anionic Exchange Resins
- Biodegradation w/o & w/ Enhanced Biofiltration or Biological Activated Carbon (BAC)
- Membrane Filtration

Enhanced Coagulation

Surface Characteristics of Selected Particulates

Zero Point of Charge, pH _{ZPC}
7.5-8.5
9.1
9.5
8.5
12.4
2-4.5
2-3.5
3.3-4.6
2.5
10-12
5-6
8–9
6-7
3
4
1
3-5
2-4
3
25

SOURCE: Parks (1967) and Stumm and Morgan (1981).

What controls the coagulant dose?

- Particles versus Natural Organic Matter (NOM)?
- Characterize NOM/Aquatic Humic Substances using Specific UV Absorbance (SUVA)
- SUVA = UV Absorbance @ 254 nm / mg/L of DOC (typically expressed L/mg•m)
- Prof James Edzwald, UMass-Amherst

Guidelines: Coagulation Control

- SUVA < 2: NOM is non-humic; does nor control coagulation
- SUVA 2-4: NOM is a mixture of nonhumics and humics; influences coagulation
- SUVA > 4: NOM is high in aquatics humics; controls coagulation

Enhanced Coagulation

 1st Option: TOC Removal Based on Raw Water TOC & Alkalinity

Raw Water	Raw Water Alkalinity (mg/L CaCO3)			
TOC (mg/L)	< 60	60 - 120	> 120	
		•1		
< 2	No Action	No Action	No Action	
2 - 4	40	30	20	
4 - 8	45	35	25	
> 8	50	40	30	

Required Percent Removals of TOC

ENHANCED COAGULATION LEVEL MAXIMUM pH*

Alk mg/L CaCO3	Maximum pH
0 - 60	5.5
60 - 120	6.3
120 - 240	7.0
> 240	7.5

*Enhanced Coagulation Requirement, Federal Register, Vol. 59, No. 145 (July 29, 1994)

Enhanced Coagulation

- 2nd Step: Bench or Pilot Testing Required
 - Addition of alum in 10 mg/L increments or equivalent amounts for ferric salts.
 - Desired dose based on point when an additional 10 mg/L alum does not decrease the residual TOC by 0.3 mg/L.

Guidelines: Coagulant dosages for water supplies where NOM controls

• Aluminum Coagulants

pH 6 to 6.5: 0.7 mg as Al/mg DOC

pH 7 to 7.5: 1 mg as Al/mg DOC

Recommended pH for Alum

Water Temp: 10 °C or Above; Use pH 6.1 - 6.5

Water Temp: Less than 10 °C Use pH 6.5 - 6.8

- Ferric Coagulants
 - pH 5.5: 2 mg as Fe per mg DOC
 - pH 7-7.5: 4 mg as Fe per mg DOC

- Organic Cationic Polymers
 - 0.65 1 mg active polymer per mg DOC

Thusly, DOC Removals

- Depends on:
 - Nature of the NOM
 - Concentration of DOC
 - Coagulant Type and Dose
 - pH

Guidelines: Estimates of DOC Removal

- SUVA <2
 - Aluminum & Ferric Coagulants ~ 20%
 - Organic Cationic Polymers ~ 10%
 - SUVA 2-3
 - Aluminum & Ferric Coagulants ~ 20 to 50%
 - Organic Cationic Polymers ~ 10 to 30%
 - SUVA 3-4 and Higher
 - Aluminum & Ferric Coagulants ~ 50 to 70%
 - Organic Cationic Polymers ~ 30 to 40%

Empirical Model for Estimating DOC Removal (Edwards 1997)

 DOC remaining after coagulation (mg/L) = non-adsorbable DOC fraction + adsorbable DOC fraction remaining after coagulation

$$DOC_{non-adsorb} = (K_1 \circ SUVA_{Raw} + K_2) \times DOC_{initial}$$
$$DOC_{adsorb remain} = -(MB + 1 - Ab) + ((MB + 1 - Ab)^2 + 4bA)^{1/2}$$
$$2b$$

where $A = (1 - SUVA_{Raw} \cdot K_1 - K_2) DOC_{initial}$ $B = (x_3pH^3 + x_2pH^2 + x_1pH)b$

Table 9-9

Summary of best-fit model coefficients for DOC removal with iron and aluminum

	DOC Mo	del Coefficients
Parameter	Iron	Aluminum
Standard error, mg/L	0.47	0.4
Standard error, %	9.3	9,5
90% confidence, %	±21	±21
Xa	4.96	4,91
X ₂	-73,9	-74.2
X ₁	280	284
K ₁	-0.028	-0.075
K ₂	0.23	0.56
b	0,068	0.147

з. <u>к</u>

Activated Carbon/Media Adsorption

- Activated Carbor
 - 1 gm = 1000m2 surface area
 - Adsorption surface
 phenomenon
 - Removal of organics by surface adsorption

Isotherm Challenge Conditions

Initial Organic Carbon Concentration: 4.62 mg/L pH Range: 7.00 to 7.69 Temperature: 20°C Shaker Table: 1500 rpm Time: 2 Hours

Figure 6. Activated Carbon Isotherm Comparisons - Winthrop, Me

Mass Adsorbed/Mass Adsorbant, mg/g _{Dry Weight}

PAC

- NOM type
- Carbon type
- PAC dosage
- Contact time
- Taste, odor and color removal

GAC for DBP precursor removal

Slow Sand Filter / GAC Sandwich

Experimental Design

Milo Raw Water Quality (Jul 95 - Sep 96)

Parameter	Average	Range
Turbidity, NTU	0.43	0.25 - 1.49
Color, units PtCo	24	11 - 40
DOC, mg/L	4.6	3.8 - 6.0
BDOC, mg/L	0.6	0.4 - 1.2
UV Absorbance, cm ⁻¹	0.153	0.098 - 0.229
THMFP, ug/L	430	331 - 570

DOC Removal for Milo Pilot Filters

Days of Operation, starting 20-Jul-95

DOC and BDOC Removal for Milo Pilot Filters

BDOC Removal with Depth (SSF Pilot Tests at Milo, NH USA)

DOC Removal with Depth, Milo Pilot Filters, 15-Mar-96

DOC Removal with Depth, Milo Pilot Filters, 29-Jul-96

GAC Sandwich Summary

- Adsorption dominated first 7000 -14000 GAC BVs.
- Removals reached pseudo steady-state after 200 - 300 days: Sand 7.5 cm 15 cm GAC GAC
 Total 12% 28% 46% Adsorption 16% 34%

Evidence against Enhanced Biodegradation:

 Biomass levels and BDOC removals were similar in sand and GAC sublayers.

Evidence for Slow Adsorption or Bioregeneration:

 Adsorption continued at a constant rate, even after 400+ days (11500 -23000 GAC BVs).

Table 3.Summary of Average Total Organic Carbon and UVAbsorbanceand % Removals for Winthrop Slow Sand Pilot Studies

<u>1ST PILOT STUDY PHASE (3/28/03 – 11/10/03)</u>										
<u>Filter</u>	TOC			<u>UV</u> ₂₅₄						
	<u>n</u>	<u>mg/L</u>	<u>%</u> <u>Removal</u>	<u>n</u>	<u>cm ⁻¹</u>	<u>% Removal</u>				
<u>Raw</u>	<u>26</u>	<u>4.66 ±</u> <u>0.46</u>	=	<u>26</u>	<u>0.113 ±</u> <u>0.009</u>	=				
<u>Plant 3</u>	<u>23</u>	<u>3.16 ±</u> <u>0.36</u>	<u>32 ± 11</u>	<u>23</u>	<u>0.080 ±</u> <u>0.011</u>	<u>29 ± 6</u>				
<u>Pilot 1</u> (Old GAC)	<u>26</u>	<u>3.01 ±</u> <u>0.40</u>	<u>35 ± 11</u>	<u>26</u>	<u>0.061 ±</u> <u>0.010</u>	<u>47 ± 8</u>				
<u>Pilot 2</u> (Sand)	<u>24</u>	<u>4.10 ±</u> <u>0.36</u>	<u>13 ± 10</u>	<u>24</u>	<u>0.101 ±</u> <u>0.011</u>	<u>11 ± 5</u>				
Pilot 3 (New GAC)	24	<u>2.10 ±</u> <u>0.47</u>	<u>54 ± 12</u>	<u>24</u>	<u>0.042 ±</u> <u>0.011</u>	<u>63 ± 10</u>				

BAC STUDY Background

FOUR SEPARATE TREATMENT TRAINS:

Train 1/DF Train = Ozone-Coag-BAC Direct Filtration

Train 2/DAF Train = Coag-DAF-Ozone-BAC Filtration

Train 3/DE Train = Ozone-BAC-DE Filtration

Train 4/MF Train = Membrane Filtration

Treatment Train No.1 Ozone-BAC Direct Filtration

Treatment Train No.1 DF Biological Filters

Filtered Water

grainsize (mm) @ loading rate (gpmsf)

Treatment Train No.2 DAF-Ozone-BAC Filtration

Treatment Train No.2 DAF Biological Filters

Filtered Water

Key: grainsize (mm) @ loading rate (gpmsf)

Treatment Train No.3 Biological Contactors

OVERALL RESEARCH OBJECTIVES

Which of the four pilot treatment trains will be most effective in removing the fractions of NOM that are:

- 1) Most amenable to reaction with chlorine, i.e. the formation of DBPs
- 2) Most available for biological activity and subsequent regrowth

OVERALL RESEARCH OBJECTIVES

1) Determine which of the four pilot treatment trains will be most effective in removing the fractions of NOM that are most amenable to reaction with chlorine

Avg THMs/Phobic DOC Thru Each Unit Operation (Feb.'97 - Aug.'97)

OVERALL RESEARCH OBJECTIVES

2) Determine which of the four pilot treatment trains will be most effective in removing the fractions of NOM that are most available for biological activity

Avg BDOC/Philic DOC Thru Each Unit Operation (Feb.'97 - Aug.'97)

BAC STUDY - CONCLUSIONS

- The treatment trains that removed the most organic precursor material were the DF and DAF Trains.
- The unit operations which resulted in the greatest reduction of THM formation were ozonation and coagulation.
- The DF and DAF Trains with BAC biofiltration produced the least biodegradable final effluents.
- The most effective unit operations for reducing biological regrowth potential were BAC biofiltration and coagulation.

Filter Media

Portsmouth, NH Philadelphia, PA Providence, RI

Average Metal Coating Content of Selected Rapid Sand Filters

RESEARCH OBJECTIVES

Explore the NOM removal potential of 'naturally' coated, regenerable sand filter media.

- 1) Assess coating characteristics of 'aged' rapid sand filter media.
- 2) Evaluate optimum initial cleaning/backwashing conditions.
- 3) Quantify NOM & Arsenic removal potentials using 'natural' AI or Fe oxide coatings on sand filter media.
- 4) Evaluate interferences associated with the adsorption capacity of the metal oxide coating.

Backwash/Regeneration Set-Up

BACKWASH SET-UP

Effect of BW Regeneration pH on NOM Removal at pH 6 Challenges

(a) Aluminum-based coating and (b) Iron-based coating

RESEARCH OBJECTIVES

Explore the NOM removal potential of 'naturally' coated, regenerable sand filter media.

- 1) Assess coating characteristics of 'aged' rapid sand filter media.
- 2) Evaluate optimum initial cleaning/backwashing conditions.
- Quantify NOM & Arsenic removal potentials using 'natural' AI or Fe oxide coatings on sand filter media.
- 4) Evaluate inorganic interferences regarding the adsorption capacity of the metal oxide coating.

Challenge Set-Up

CHALLENGE SET-UP

Comparison of Synthetic and Natural DOC Challenge Solutions at pH 6 after Regeneration at pH 11 of Iron-Coated Sand

Effect of Challenge Solution pH on NOM Removal after Regeneration at pH 11

(a) aluminum-based coating and (b) iron-based coating

Relating 60 Bed Volumes to Filter Run Times (hr)

	Filter Bed Depth, ft				
Q, gpm/ft ²	<u>2</u>	<u>4</u>	<u>6</u>		
2		15.0	22.4		
4	3.7		11.2		
6	2.5	5.0			
Influence of Source Waters Adjusted to pH 5 on Organic Matter Removals after Regeneration of Iron-coated Sand at pH 11

DOC Removals from a Clarified Source Water adjusted to pH 5 after Regeneration at pH 11 of an Iron-Coated Sand

Anionic Exchange Resins

Biodegradation with and without Enhanced Biofiltration and BAC

Biofiltration for DBP precursor removal

Typical Layout of a RBF Well

Cedar Rapids, IA

Louisville, KY

Removal Processes Taking Place at an RBF Site

Typical DOC variations as a function of river discharge in Pembroke, NH including groundwater dilution impacts.

DOC Removals versus Probability of Exceedance in Pembroke, NH and Louisville, KY

DOC removal capability of exceedance comparison between Pembroke, NH and Louisville, KY

Site Specific RBF Parameters Influencing DOC Removals

- Initial DOC Concentration & Biodegradability
- Hydraulic Residence/Travel Time
- Aquifer Transmissivity
- Extent of Groundwater Dilution
- Composition of Subsurface Material
- Aerobic vs Anaerobic Subsurface Conditions
- Intermittent vs Continuous Operations

PORTSMOUTH OZONE EFFECTS: THMFP

AVERAGE PERCENT REMOVALS RUN 2

Selected "Multi-stage" Prefabricated Treatment System

Design Parameters

	Peak Day	Average Summer Day	Average Winter Day
Flow Rate, gpd	250,000	125,000	80,000
Slow sand filtration rate, gpm/ft ²	0.12	0.06	0.04
Slow sand filter empty bed contact time, minutes	324	648	1,010

Operational Summary (5/28/03 – 6/12/03)					
	Preozonatio	Pr	Plant Start Date: Feb. 25, 200 Preozonation Start Date: May 28, 200		
	Raw Water	Upflow Roughing Filter	→ Slow Sand Filter	► Limestone Bed Contactor	
Turbidity (NTU)	0.8	0.3	0.2		
Color (CU)	25		5		
UV Abs. (cm-1)	0.489	0.202	0.187	0.185	
TOC (mg/L)	9.89	7.10	6.36	6.27	

"NEW" Modifications to SSF

- Replace limestone bed contactor with GAC or anionic resin with separate regeneration system
- Utilize an anionic resin "mat/quilt" on top of limestone bed contactor
- Use iron additions (<0.1ppm) to enhance NOM adsorption by iron-coated sand media

Membrane Filtration (Nanofiltration)

Membrane Process	MWCO (daltons) ^a	Operating Pressures	Recovery	Trans- membrane	Primary Application
	or Pore Size (μm) ^b			Flux	
Microfiltration	0.05-5 ^b	5 to 30	95 to 98%	100 to	Particle
		psi		1,000 gfd	Removal Disinfection
Ultrafiltration	1,000-	7 to 60	80 to 95%	20 to 300	Partical
	500,000 ^a	psi		gfd	Removal Disinfection
Nanofiltration	200-	50 to 120	70 to 90%	15 to 25	Softening
	1,000 ^a	psi		gfd	NOM
					Removal
Reverse	<200 ^a	200 to	50 to 85%	3 to 20 gfd	Desalting,
Osmosis		1,500 psi			SOC
					IOC Removal

Membranes for DBP precursor removal

TABLE 4.1

Summary of DBP Precursor Studies with Membrane Processes

Water Source	Pretreatment	Membrane technology	Feed water THMFP (µg/L)	Treated THMFP (μg/L)	Percent THMFP removal
Ground	Antiscalant,	NF	961	28-32	97
	Prefiltration	NF	961	31-39	96–97
		UF	961	326-947	2-66
Surface	Prefiltration	NF	157-182	55-84	49-70
Ground	Prefiltration	NF	176-472	6–95	78–98
Surface	None	MF	60–630	40-420	20
	Coagulation	MF	70-80	30-40	40-60
Ground	Prefiltration	NF	259	39	85
Ground	pH adjustment Prefiltration	NF	120	6	95
Surface	Prefiltration	UF	40-460	NA	<10
	Prefiltration	NF	40-460	NA	30-90
	UF	NF	40-460	NA	90

Source: From Taylor, J.S., and Wiesner, M., Membranes, in *Water Quality and Treatment 5th ed.*, Letterman, R.D., Ed., Copyright ©1999 by The McGraw-Hill Companies, Inc. Reprinted by permission of the publisher.

(Taylor & Wiesner)

Other Approaches to Reducing DBPs in Drinking Water

- Utilize "best" quality source water
 - Multilevel draw-offs from stratified reservoirs
 - Reduce exposure to algal blooms
 - Utilize selective pretreatment options, e.g.
 riverbank filtration, infiltration galleries, gravel
 roughing filters

- Minimize the use of chlorine
 - Replace chlorine with other disinfectant(s), e.g. UV+chloramination

- Utilize separate water system for residents close to WTP for CT purposes
- Reduce distribution system residence time from a single chlorination point by using disinfectant booster stations
- Reduce chlorine demand in distribution system by
 - Replacing old water mains
 - Initiating a strong flushing program

General Comparison

	BAC	SSF	RBF	AR/SAT
Turbidity (NTU)	≤ 1 NTU	≤ 1 NTU	≤ 1 NTU	≤ 1 NTU
DOC Removal	≥ 15 %	≥ 10 %	≥ 30 %	≥ 50 %
Biostability: BDOC Removal	50 %	50 %	< MDL	< MDL

General Comparison - cont

	BAC	SSF	RBF	AR/SAT
Effective Turbidity Removal	\checkmark	\checkmark	$\checkmark \checkmark$	√ √
Effective DOC Removal	✓ (15-35%)	✓ (10-30%)	✓✓ (12-93+%)	✓ ✓ (10-93+%)
Biostability	$\checkmark \checkmark$	$\checkmark \checkmark$	$\checkmark \checkmark$	$\checkmark \checkmark$

Biodegradation of Disinfection By-Products

DBP removal

- GAC adsorption
 - Low carbon capacity
- Membranes
 - RO filtration; excellent for HAAs; OK for THMs
- Biofiltration
 - Biologically active carbon; HAAs not THMs
- Aeration
 - THMs, especially chloroform

GAC for THM removal

107

GAC for haloacetic acid removal

108
BAC filtration on HAAs

BAC filtration on DBPs

